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Abstract

Although we are acquainted anecdotally with extraordinarily people like Mozart and Marie
Curie, there is little systematic research on how children with exceptional ability develop into
truly extraordinary talents. Is the supply of extraordinary talent inelastic, dependent on a rare
combination of innate gifts and the availability of mentors who are themselves world-class
(Irène Joliot-Curie and her mother Marie)? Or, could the supply be fairly elastic because men-
tors need only have abilities within the normal range? I analyze these questions in the context
of mathematics, where there is a consensus on how exceptional ability presents itself in chil-
dren. I show that mathematics teachers who organize clubs and competitions can identify and
foster exceptional math students, causing them to win honors, attend selective universities, ma-
jor in STEM fields, and have careers in which they disproportionately spur economic growth.
I demonstrate that there are many exceptional math students without mentors who could be
reached with modest investments.

*Thanks to Nick Bloom, Glenn Ellison, Patrick Gaule, Caroline Hoxby, and Isaac Sorkin for substantial guidance and
support. I also thank the workshop and seminar participants at Stanford for feedback. I give a special thanks to the many
mathematics teachers across the US who helped me collect the data for this project. This research was support by grants
from the George P. Shultz Dissertation Support Fund at SIEPR, the Global Math Talent Fellowship through the NBER
and the Agency Fund, and the National Science Foundation’s Graduation Research Fellowship Program. All errors are
my own.

†Department of Economics, Stanford University. icalaway@stanford.edu

https://icalaway.github.io/job-market-paper/Calaway_JMP.pdf
mailto:icalaway@stanford.edu


1 Introduction

The biographies of extraordinary musicians, athletes, and scientists often reveal paths shaped by

early demonstrations of innate ability and the significant influence of childhood mentors. These

accounts suggest that the supply of exceptional talent depends not only on innate ability but also on

access to capable mentors. While previous research suggests that early mentors are key to devel-

oping extraordinary talent, there is a lack of causal evidence from observable non-parental mentor-

mentee relationships. This evidence is essential for understanding the elasticity of extraordinary

talent (Ellison and Swanson, 2016; Bell et al., 2019; Hoisl, Kongsted and Mariani, 2023; Airoldi

and Moser, 2024).

I consider two hypotheses for the types of early mentors required for the production of extraor-

dinary talent. One hypothesis, which I call the “expert mentor” hypothesis, posits that extraordinary

talent arises when a child with exceptional abilities is paired with a mentor who also possesses

incredible talent. Under this hypothesis, the supply of extraordinary talent is largely inelastic, as

both the mentee and mentor must be exceptional. The “proficient mentor” hypothesis posits that a

reasonably capable mentor who can identify and nurture the abilities of exceptional children may

suffice. If this were true, the supply of extraordinary talent could be more elastic, depending on the

availability of mentors in educational or social settings. In the case of extraordinary knowledge pro-

ducers, this would have important implications for scientific progress and economic growth (Rosen,

1981; Romer, 1990; Azoulay, Graff Zivin and Wang, 2010; McHale et al., 2023).

In my paper I test the proficient mentor hypothesis in the context of mathematics by estimating

the causal effect of making proficient mentors available to exceptional students. Mathematics is a

natural domain to test this hypothesis for a few reasons. First, there is a large, decentralized supply

of potential proficient mentors with access to potential mentees–math teachers. Second, there is

a general consensus on how exceptional math ability presents itself in childhood (i.e. advanced

problem solving). Lastly, exceptional math students often pursue careers in science, technology,

and innovation where they can generate significant positive externalities.

I estimate the causal effects proficient math mentors have on schools and exceptional math stu-

dents. By leveraging exogenous variation in the arrival or activation of math mentors at schools,

I provide causal evidence that math mentors help reveal and develop exceptional math talent. In

a separate analysis leveraging differential access to potential math mentors, I estimate the impact

these mentors have on the later-in-life outcomes of students. My causal estimates (LATE) im-

ply these mentors greatly increase the probability exceptional math students attend highly-selective

universities, major in STEM, earn PhDs, and pursue research careers. I then estimate the amount of

exceptional math talent at schools without such mentors. Using my estimated mentor effects, I pro-

vide back-of-the-envelope estimates for how providing these students with mentors would increase

the number of students with these outcomes.
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This research leverages novel data from math competitions including the American Mathematics

Competitions (AMC) and Math League to identify exceptional math students and math mentors.

These math competition data are combined with data from online professional profiles to determine

the later-in-life outcomes of students and retrieve additional information on mentors.

The AMC has been dedicated to identifying exceptional math talent in youth since 1950, and I

use data from their competitions for the same purpose in this paper. The AMC has long published

national summaries of its middle school and high school competitions, recognizing top perform-

ing students in various honor roll lists (Committee on the American Mathematics Competitions,

1980–2023). These lists, available since 2010 online and earlier in printed booklets, contain de-

tailed information on thousands of exceptional math students each year, including their competition

scores, school, city, and state. To extend the dataset back to 1980, I tracked down copies of these

booklets by contacting thousands of current and former math teachers and digitized the data. There

is, however, effectively no information on the teachers who organized these AMC competitions at

their schools. This is where the Math League data is critical. Administrative data from Math League

allow me to identify individuals–overwhelmingly math teachers–who organized math competitions

at thousands of different middle schools and high schools from 1994 to 2020. These individuals–

who facilitate Math League, an extracurricular math activity designed for talented math students–are

the math mentors in this paper.

By matching math mentors and AMC high scorers to their LinkedIn profiles, I am able to gather

information on their education and work histories. For the math mentors, these data provide in-

sights on who these mentors are. Are they above-average math teachers or exceptional individuals

themselves? The descriptive evidence suggests they fall primarily into the earlier category: above-

average math teachers. This is promising for the elasticity of great scientists and innovators; it sug-

gests early mentor access could be scaled, with most schools already having a teacher who could be

“activated.” For the exceptional math students, I use these data to observe later-in-life outcomes of

exceptional students that math mentors might influence like attending a selective university, major-

ing in a STEM, earning a PhD, and/or working as a scientist or researcher.

The matched AMC high scorer data allow me to provide novel descriptive evidence on the

educational and occupational choices of exceptional math students. Much of this evidence would

be impossible to produce with analogous data from standardized tests like the ACT/SAT because

those tests censor the math abilities of these students (Ellison and Swanson, 2010). Indeed, this

censoring issue may be why a handful of highly selective universities like MIT and Caltech request

applicants list their AMC scorers if they have participated (Surjadi and Randazzo, 2024). Such

schools cannot rely on the ACT/SAT to identify the next John Nash. With this in mind, I present

three descriptive facts on these students:

• Fact 1: Exceptionally talented math students are disproportionately involved in science, in-

novation, and entrepreneurship.
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• Fact 2: Even at the fair right tail of the math ability distribution, exceptional math students

continue to sort by ability.

• Fact 3: Even after controlling for ability, there are significant demographic gaps in those that

attend selective universities and pursue science.

The first and second facts highlight the role exceptional math students in science and research,

which underscores the motivation for studying the early mentors of these students (i.e. potential

to generate positive externalities). The third fact highlights that even among the most exceptional

math students in the US, there are still substantial gaps in educational and occupational outcomes.

By leveraging plausibly exogenous variation in the timing schools begin participating in Math

League, I find that math mentors play a crucial role in identifying exceptional math students at

their schools. Specifically, when a math mentor becomes active at a middle school, the number of

top AMC scorers at that school increases dramatically–by 165%. For high schools this effect is

smaller, but still large (47%). Various tests suggest that these effects result from the efforts of the

math mentors, who expand access to competitions, encourage participation, and provide preparation

and training. While it may seem unsurprising that increased investment in math competitions leads

to greater success, the key implication is that, without a dedicated math mentor, many exceptional

students may go unidentified by the AMC and, more importantly, may lack the mentorship necessary

to develop their unique abilities. Given the decline in extracurricular math activities (Figure 1), the

US may be less effective at both identifying and nurturing exceptional talent at the school level than

it has been in the past.

I provide causal evidence that the effects of high school math mentors on exceptional math stu-

dents are large. This analysis relies on a sample of middle school top AMC scorers, students who

have already demonstrated they are exceptional in mathematics prior to high school. First, I pro-

vide OLS estimates that suggest having a math mentor in high school increases the probability of

attending a highly-selective university (5.7pp), majoring in STEM (3.8pp), earning a PhD (2.2pp),

and pursuing a career as a scientist or professor (1.7pp). These estimates include middle school

fixed effects and a measure of middle school math ability (national middle school AMC rank). Rec-

ognizing these OLS estimates may be biased, I estimate these mentor effects using an instrumental

variables strategy. My instrument is whether the student’s middle school is within five miles of a

high school in the same district with an active math mentor. The IV estimates are significant and

notably larger–though less precise. These IV estimates correspond to the local average treatment

effect (LATE) and imply mentor effects are particularly large for students whose mentor status is

conditional on mentor availability. In the case of attending a highly-selective university, the IV

estimates imply mentors increase the probability by 41pp.

To better understand the amount of exceptional math talent in the US, I estimate the number

of exceptional math students at a large set of public high schools without a math mentor. These
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“missing” exceptional math students are the students who were not identified by the AMC because

their school did not participate. My estimates indicate that around 36% of the exceptional math

students who would participate and excel in this activity are not being identified because they lack

a mentor who facilitates the activity. These “missing” students are disproportionately from states

with large rural populations, suggesting inequalities in access to resources relevant to these students

may be related to population concentration. From the perspective of a small community this is

reasonable: why should a city allocate even a small amount of resources for a student type that only

appears once every ten years? Aggregating to the national perspective provides an answer: because

students of this type might generate large positive externalities.

I use results from the aforementioned analyses to provided back-of-the-envelope estimates for

the impact of providing broader access to math mentors. These estimates suggest expanding access

to math mentors at these schools would dramatically increase the number of exceptional math stu-

dents who attends selective universities, major in STEM, earn PhDs, and pursue careers as scientists

or professors. Based on the descriptive evidence on mentors and the modest costs of these activities,

it seems expanding access in this way is, indeed, feasible and relatively low-cost given the potential

positive externalities these students could generate.

In summary, my paper makes four key contributions to understanding the role of early mentors

in the production of knowledge creators. First, I provide causal evidence that school-based mentors

play a critical role in identifying and developing exceptional math students, who often go on to

become scientists and innovators. Second, I demonstrate that these mentors significantly influence

students’ long-term trajectories, increasing the likelihood they become knowledge producers. Third,

I show that many exceptional students remain unidentified, particularly in geographically disadvan-

taged areas, highlighting inequities in talent identification. Finally, I introduce several large, novel

datasets that offer valuable opportunities for future research in this field.

1.1 Related Literature

This research contributes to the literature on how childhood characteristics and environment in-

fluence later-in-life knowledge production. Previous studies show that high mathematical ability

in childhood strongly correlates with knowledge production in adulthood (Aghion et al., 2017; Ak-

cigit, Grigsby and Nicholas, 2017; Bell et al., 2019; Agarwal and Gaule, 2020; Morgan et al., 2022).

At the same time, this literature highlights the importance of environmental factors—such as expo-

sure to innovators, neighborhood characteristics, and parental income, education, occupation—in

determining who becomes an inventor or knowledge producer later in life (Morgan et al., 2022;

Hoisl, Kongsted and Mariani, 2023; Airoldi and Moser, 2024). My paper advances this literature

in two important ways. First, I provide causal evidence for a mechanism hypothesized in this liter-

ature by directly linking exceptionally talented math students to non-parental mentors who are not

themselves field experts. Second, I introduce a large, novel data set of exceptionally talented math
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students from diverse backgrounds that can be used in further research in this literature.

This research contributes to the related literature on the college choices of high-achieving stu-

dents. This research provides evidence that information inequalities prevent some high-achieving

students from applying to and/or attending selective universities (Bettinger et al., 2012; Hoxby and

Avery, 2014; Falk, Kosse and Pinger, 2020; Dynarski et al., 2021). Hoxby and Avery link these

information gaps to limited access to mentors who have attended such universities. I make two

contributions to this literature. First, I provide descriptive evidence that gaps in selective univer-

sity attendance persist even among students whose talents exceed what can be measured by the

ACT/SAT. Second, I provide causal evidence that school-based mentors can greatly increase the

probability high-achieving students attend selective universities.

My research also contributes to the literature in economics and developmental psychology that

examines the impact of natural mentors on children’s development (Zimmerman, Bingenheimer

and Behrendt, 2005; Miranda-Chan et al., 2016; Van Dam et al., 2018; Hagler and Rhodes, 2018;

Kraft, Bolves and Hurd, 2023). My work builds on this literature, particularly the research of

Kraft et al., who study school-based natural mentors (teachers, counselors, and coaches) and find

that these mentors increase college attendance by 9.4 percentage points, with the largest effects

observed among students from lower socioeconomic backgrounds (Kraft, Bolves and Hurd, 2023).

My primary contribution to this literature is evidence that there are positive natural mentors even

for students at the far right tail of ability.

2 Mentors in the Production of Exceptional Talent

To distinguish between the expert mentor hypothesis and the proficient mentor hypothesis, and to

understand their implications for the production of talent, consider a simple model of the production

of aggregate talent in a given field. Let T represent the aggregate stock of exceptional talent. The

production of this talent is a transformation process where children with exceptional ability are

shaped through exposure to mentors, who may either be experts or proficient in the field.

To demonstrate how mentors contribute to the production of talent under the two hypotheses, I

consider a stylized Cobb-Douglas talent production function where talent T is produced with fixed

technology A through the combination of the supply of children demonstrating exceptional ability

in the field (C) and the number of expert (e) and proficient (p) mentors. I express the latter mentor

quantities as the product of the number of individuals with expertise and proficiency in a given

field (Ne and Np, respectively) and the shares of these individuals who serve as mentors (pe and pp,

respectively):

T = ACα(ppNp)
β(peNe)

γ (1)

where because expertise is scarce, Ne << Np, and because expertise is more valuable in the pro-
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duction of talent, γ > β. Taking society’s endowment of raw talent C and potential mentors Ne and

Np as fixed, the extent to which T can be increased depends on pe, pp, and the elasticities in the

production function.

Under the expert mentor hypothesis, proficient mentors are unable to influence the production

of exceptional talent. In the production function, this hypothesis implies β = 0. In this case, T can

only be increased by increasing the number of expert mentors. Even if the elasticity γ is large, this

pathway faces critical limitations in its ability to increase T . First, to the extent that the supply of

experts in any given field is limited, the number of potential expert mentors is capped and far less

than the number of potential mentors. Second, by virtue of the scarcity of expertise, shifting experts

into mentorship roles may be costly, both socially through taking them away from their domains of

expertise and privately from their inability to capture the returns to their expertise.

Alternatively, under the proficient mentor hypothesis, β > 0, and mentors who are not them-

selves experts can influence T . These proficient mentors serve as substitutes for expert mentors in

the production of exceptional talent. Although expert mentors are more productive in cultivating

talent, their scarcity and the opportunity cost of diverting them from their fields of expertise create

trade-offs. In fields where the scarcity of such mentors is very high or the opportunity cost of divert-

ing these mentors is high, proficient mentors, although less productive, become viable substitutes.

To test whether the expert or proficient mentor hypothesis holds true, I estimate the effects of

proficient mentors on the outcomes of children with exceptional ability. The expert mentor hypothe-

sis would predict that proficient mentors do not influence the outcomes of children with exceptional

ability, whereas the proficient mentor hypothesis would predict that exposure to a proficient mentor

can positively impact the outcomes of children with exceptional ability.

3 Data

For this paper, I require a large, geographically and temporally diverse sample of exceptional math

students, along with information about their middle schools, high schools, math mentors, and later-

in-life outcomes. Consequently, this research makes use of a variety of data sources. This section

provides a brief overview of the data used in this paper including data from the American Mathe-

matics Competitions (AMC), Math League, LinkedIn, the National Center for Education Statistics

data (NCES), and the Wisconsin All Staff Reports,

3.1 American Mathematics Competitions (AMC) Data

I constructed a novel dataset of exceptional math students by compiling AMC results from 1980

to 2020. Results from 2011 to 2020 were collected from the AMC digital archive, while results

from 1980 to 2010 were hand-collected from physical books, which were distributed annually to
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participating schools. I gathered these books by contacting thousands of current and former math

teachers, which I then digitized.

While the data cover various AMC competitions, this paper uses the from the flagship middle

school competition (AMC 8) and flagship high school competitions (AMC 10 A/B and AMC 12

A/B).12 The data contain both summary statistics for these competitions and various lists of high-

scoring students. The summary statistics provide details on the number of participants and schools,

score distributions, and commentary. The student lists include each top scorer’s first initial, last

name, score, grade, school, city, and state. In total, the middle school observations exceed 300,000

(AMC 8), while the high school observations exceed 500,000 (AMC 10/12) .

For each student listed, I calculate their rank in the given competition based on their score. This

serves as my measure of student math ability.3 In most years, scoring in the top 3,200 is sufficient

to make the student honor roll lists (Figure 2). I leverage this threshold for a school-level outcome

in my analyses.

3.2 Math League Data

One limitation of the AMC data is the lack of a complete list of participating schools. While I

can infer some participation from the honoree lists, I cannot determine if schools with no honorees

failed to participate or simply lacked top-performing students. This uncertainty limits the data’s

ability to fully capture the distribution of math talent across US schools.

For this reason, I also collected data from Math League, which has organized math competitions

throughout the US at the elementary, middle, and high school level since 1977. These Math League

data span 1994 to 2020, and they include information on all participating schools, the individuals at

these schools who facilitate these competitions, and the names of top-performing students.

These data are critical for my analyses for a variety of reasons. First, they allow me to determine

the set of schools participating in the competition over time. This is in contrast to the AMC data,

where I cannot accurately determine participation. Knowing exactly when these competitions are

offered is necessary for my later empirical strategies because they allow me to determine when a

1The data also cover the American Invitational Mathematics Examination (AIME) and the United States American
Mathematical Olympiad (USAMO).

2The AMC has changed the names of these competitions over the years. From its inception in 1985 until 1999, AMC
8 was called the American Junior High School Mathematics Examination (AJHSME). Before 2000, there was only one
high school competition. From 1950 till 1972 this competition was simply called the Annual High School Contest. From
1973 till 1982, this exam was called the Annual High School Mathematics Examination, which slightly change to the
American High School Mathematics Examination for years 1983 to 1999. In 2000, the AMC separated the competition
into the AMC 10 and AMC 12, which targeted 9th/10th graders and 11th/12th graders respectively. Finally, in 2001 the
AMC began offering two different dates for the AMC 10 and AMC 12 resulting in the A and B distinction.

3Raw score is problematic because the competition questions vary in difficulty over time. Score percentile is also
problematic because the number of participating schools and students decreases dramatically over the sample period.
Score rank suffers from the same problem, but to a lesser extent; the score rank of top-performing students is unaffected
by the number of low-performing students, while their score percentile is affected by such students.
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math mentor is active at a school. Second, the information on the school employees who organize

Math League at their schools–including full names and years active in Math League–provides key

insights on who these mentors are when combined with other data sources. Lastly, the information

on top-performing students allows me to observe some of the students participating in the activity.

In one of my analyses, this information enables me to distinguish between exceptional math students

who do and do not participate in the program.

3.3 LinkedIn Data

I use data from Revelio Labs, which contains online professional profiles of over 700 million in-

dividuals, to track the later-in-life outcomes of students in the AMC sample. From these profiles,

I observe names, employment history, educational backgrounds, and self-reported information on

jobs and universities. Revelio Labs also imputes gender and race based on names and location,

which are used throughout my analysis.

I match AMC students to LinkedIn profiles by first matching on initials, last name, and gradu-

ation years, and then using fuzzy matching based on high schools when available. I further refine

matches using a logit model to predict the likelihood of an accurate first-name match, restricting the

final sample to those with a high predicted probability.

The outcomes of interest include four binary variables reflecting common milestones for highly

productive scientists and researchers: attending a highly selective university, majoring in a STEM

field, earning a PhD, and working as a scientist or professor.

3.4 Supplementary Education Data

I collected data on public and private schools across the US through the National Center for Educa-

tion Statistics (NCES). The data for public schools come from the Common Core of Data (CCD),

which provides annual records for all public schools extending back to 1986. The data for private

schools come from the Private School Universe Survey (PSS), which provides biennial records for

most private schools extending back to 1989.4

The CCD and PSS data provide information on school names, geographic locations, grades

offered, student enrollment and demographic counts, and faculty employment5. Based on the school

identifying codes, the CCD data from 1986 to 2020 include 160,760 unique public schools, of which

43,904 offer 12th grade. On the private school side, the PSS data from 1989 to 2020 include 80,497

private schools with 21,766 ever offering 12th grade. I match the schools in the AMC and Math

4Per the PSS, “The survey universe is composed of schools from several sources. The main source is a list frame,
initially developed for the 1989-90 survey. The list is updated periodically by matching it with lists provided by nation-
wide private school associations, state departments of education, and other national private school guides and sources.
Additionally, an area frame search is conducted by the Bureau of the Census.”

5For private school data in odd number years, I simply use PSS data from the previous even number year.
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League data to these sources using school names and location information. The NCES data provides

important information on the environments of the Math League schools and schools of top AMC

students. Critically, the NCES data also allow me to determine the set of schools each year with no

top AMC student and the schools not participating in Math League.

I also use data from the NCES School Attendance Boundary Survey (SABS), which provides

the 2015-2016 attendance boundaries for over 70,000 schools in 12,000 districts across the US.

This data enables me to more accurately and precisely identify which middle schools feed into

which high schools, compared to relying on the relative distance between schools. This accuracy

and precision is important for my instrumental variables strategy.

The final data I use for this paper comes from the Wisconsin All Staff Report, which provides

detailed information on staff assignments in Wisconsin schools from 1995 to 2024. I use these data

to obtain more detailed descriptive evidence on a subsample of Math League mentors. These data

allow me to better understand the positions of these mentors, their teaching experience, and the

timing of them becoming Math League mentors.

4 Descriptive Evidence on Math Mentors and Math Talent

In this section, I present a series of descriptive findings on the distribution of top AMC students

across majors, colleges, and careers. These findings lead to three main takeaways: (1) exceptional

math students are disproportionately involved in science, innovation, and entrepreneurship; (2) even

at the fair right tail of the math ability distribution, exceptional math students continue to sort by

ability; and (3) even after controlling for ability and secondary schooling, there are significant de-

mographic gaps in attendance at selective universities and in the pursuit of science education and

careers. These takeaways would be challenging to derive using data from common standardized

tests like ACT/SAT because which often censor math ability beyond the 99th percentile.

4.1 Samples and Methods

The descriptive analysis in this section relies on two samples of high achieving math students,

matched to their LinkedIn profiles. One sample consists of 14,249 students from the middle school

AMC data; the other includes 24,424 students from the high school AMC data. In brief, I match

on first initial, last name, and either high school or college graduation year, and then apply a logit

model with additional information to estimate the probability that a potential match leads to an exact

first name match. A detailed description of this process is provided in Appendix A.

To benchmark I construct a reference sample of US college graduates using the LinkedIn data

for both AMC-matched samples. For each AMC student, I randomly select an online professional

profile of a US college graduate from the same graduating cohort. These reference samples serve

as benchmarks, allowing for comparison of career and educational outcomes while accounting for
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temporal variation in the AMC-matched samples. I could, instead, benchmark the AMC samples

against data from the NCES, but my approach alleviates concerns with respect to selection onto

LinkedIn.

Although the descriptive patterns and takeaways are largely consistent between the middle

school and high school matched samples, there are distinct advantages to presenting both. The

high school sample is larger, spans a longer time period, and includes exams such as the AMC 12,

which have been studied by other researchers, providing additional context for the descriptive anal-

ysis (Ellison and Swanson, 2010, 2016, 2023). The middle school sample, however, also warrants

inclusion. It offers insights from a previously unexplored data source and is essential for a key

empirical strategy later in the paper, where the high school sample would not serve as a substitute.

For brevity, when reporting analogous statistics or referencing similar figures and tables for both

samples, I use slashes to present the middle school and high school data side by side (e.g. 8%/10%).

4.2 Majors, Colleges, and Careers of Exceptional Math Students

Fact 1: Exceptionally talented math students are disproportionately involved in science, inno-
vation, and entrepreneurship

AMC students attend highly-selective universities (22%/31%), major in STEM (48%/54%),

earn doctoral degrees (8%/12%), and pursue careers as scientists or professor (8%/11%) at very

high rates (Table 1). Compared to the matched sample of college graduates, they are ten times

as likely to attend an elite undergraduate institution, twice as likely to major in STEM, five times

more likely to earn a PhD, and three times more likely to pursue a research career. The primary

demographic difference between the AMC samples and the reference samples is that the AMC

sample has a higher share of Asian individuals.

The high shares of AMC students majoring in STEM, pursuing a PhD, and choosing careers

in research obscures important heterogeneity in the fields pursued by these students. While they

display exceptional ability in mathematics, they typically pursue fields outside of mathematics

and statistics. Indeed, only 9%/14% of the sample major in mathematics, statistics, or actuar-

ial sciences. Higher shares of these students major in engineering (19%/21%), computer sci-

ence (12%/14%), and social science (16%/14%). Other common majors include the life sciences

(8%/7%), physics/astronomy (3%/5%), and chemistry/biochemistry. Many of the students in these

majors continue and earn a PhD and work as a professor or scientist (Table 2).

Ultimately, the economic and scientific impacts of these students depend on their career deci-

sions and opportunities after college. From Table 1, it is clear these students pursue research careers

at a relatively high rate, and the estimates in Table 3 suggest there continues to be sorting by math

ability even amongst these top students. These statistics and estimates, however, fail to demonstrate

the unique economic and scientific contributions of these students.
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To better communicate the the role these students play in the economy, I perform a text anal-

ysis on the job titles and company names they list on their online professional profiles. I begin by

compiling a list of all the unique words appearing in the job titles of matched AMC students. I then

determine the frequency with which each of these words appears at least once in the job titles of

those students in my AMC matched sample. I then count the frequency with which these words

appear in the job titles of the individuals in my reference sample. This latter count helps me distin-

guish between words that are generally common in LinkedIn job titles and those that are relatively

unique to AMC students. I make similar frequency counts for the company names listed on these

profiles.

The text analysis reveals these AMC students pursue impressive careers in a diverse set of fields.

It indicates top AMC students work in academia, science, technology6, medicine, and finance at

rates much higher than other college graduates (Table 4). The list of company names confirms

these AMC high scorers are often employed by the most innovative and prestigious companies and

universities in the world (Table 5).

Fact 2: Even at the fair right tail of the math ability distribution, exceptional math students
continue to sort by ability.

Many of these AMC students have a mathematical ability that is censored by traditional pre-

college measures like the ACT/SAT. Ellison and Swanson argue that an AMC score of 100 on

the 2007 AMC 12 A (Rank 2,812) is roughly equivalent to a perfect SAT math score and also

serves as a more reliable measure of ability. Yet, relative AMC performances continue to have

predictive power beyond this range of ability for the probability students major in STEM, attend

an elite undergraduate institution, earn doctoral degrees, and pursue research careers, researcher, or

professor. These relationships persist even after controlling for student gender, race, high school

graduation year, and school fixed effects (Figure 3 /4).

To estimate the association between these outcomes and AMC performance, I regress each

outcome (yi) on AMC rank (ranki) while including controls for student gender, race, grade during

observed AMC test, AMC test, hometown share of college graduates, high school graduation cohort

fixed effects (τt), and school fixed effects (δs). I multiply the AMC ranks by 1,000 and make

them negative, so the coefficient on ranki corresponds to an improvement in AMC rank by 1,000

positions.

yi = α+βranki + γt +δs +Xiλ+ εist (2)

6The frequency of cofounder in these job titles hints at the incredible impact some AMC high scorers have had in
technology startups. While not all are included in these matched samples, Sergey Brin (Google), Mark Zuckerberg (Meta),
Peter Thiel (PayPal), and Sam Altman (OpenAI) were all top AMC scorers (Committee on the American Mathematics
Competitions, 1980–2023)
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The models (Equation 2) are estimated using OLS for the four outcomes. The estimated coefficients

are provided in Table 3. The omitted category is white, male students.

The estimates indicate a 1,000 rank improvement in AMC performance is associated with a

2.3pp/1.3pp higher probability of attending an selective university, a 1.5pp/1.6pp higher probability

of majoring in STEM, a 0.7pp/1.3pp higher probability of earning a PhD, and a 0.5pp/0.4pp higher

probability of becoming a scientist or professor. The estimates are all highly statistically significant.

Compared to the relationship between these outcomes and hometown college share, the AMC rank

coefficients are sizeable.

Fact 3: Even after controlling for ability, there are significant demographic gaps in those that
attend selective universities and pursue science.

The estimates in Table 3 reveal that even after controlling for ability, there are numerous demo-

graphic gaps in these later-in-life outcomes. Gaps exist between male and female students and asian

and non-asian students.

The gender gaps are the most striking. In the case of pursuing science, the estimated coefficients

indicate exceptional female students pursue STEM majors at a rate that is 19pp/20pp lower than

male students. While gender gaps in STEM have been well documented in previous research,

finding this large a gap among exceptionally talented male and female students despite the rich

set of controls is surprising. It is possible this gap is simply driven by gender differences in taste

for STEM, but there is also a substantial gap in the rate these male and female students attend

highly-selective colleges. Per the estimates, female students are 4pp/6pp less likely to attend a

highly-selective colleges. This, in turn, may be influencing the share of these students who pursue

PhDs, for which there is also a gender gap (0.9pp/2.1pp). There are also significant gaps between

asian and non-asian exceptional math students for many of these outcomes, with asian students

being more likely to attend selective universities and major in STEM.

4.3 Who Becomes a Math Mentor?

To provide descriptive evidence on the individuals who become Math League mentors at high

schools, I match Math League mentors from the Math League data to the Wisconsin All Staff data

(1995-2024) by first name, last name, year, and school. This results in 1,327 matched mentor-years

associated with 329 unique mentors. Of these unique mentors, I can observe the first year for 257.

In Table 6, I provide information on the demographic characteristics, education, and work ex-

perience of these 257 individuals during their first year as mentors. Of these individuals, 91% are

teachers with most others being dedicated gifted & talented coordinators. The vast majority of these

teachers are mathematics teachers, though there are some computer science and physics teachers

organizing the program as well. Effectively none of these mentors are principals, and only a small
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share are department chairs. In terms of experience, they are in their mid-careers with an average of

12 years of experience, a majority of this experience being within their current district. Neverthe-

less, a decent share (32%) are relatively recent hires, who first become Math League mentors during

or before their third year in the district. Only a small share have their roles as “Club Advisors”

documented in the staff data, which suggests most mentors are not being compensated or formally

recognized for organizing this activity. Nevertheless, the average number of years I observe these

mentors organize Math League is 3.5 years.

The descriptive evidence from Wisconsin suggests these potential mentors might be abundant.

That is, there may be a math teacher at most schools who could serve such as a mentor in Math

League or for a similar program. To provide further evidence of this, I match Math League mentors

from the Math League data to their LinkedIn profiles. I match on first name, last name, and school.7

I provide summary statistics for these mentors in Table 7. The most notable additional piece of evi-

dence from this LinkedIn matched sample is the low share of mentors who list attending a selective

university. This adds further credence to the abundance of math teachers who could be school-based

mentors to exceptionally talented students.

5 Math Mentor Effects on Schools and Students

In this section, I estimate the causal impacts of math mentors on both the amount of exceptional math

talent revealed at schools and later-in-life educational and career outcomes of individual exceptional

math students. To estimate the effect on the amount of talent revealed at a school, I exploit temporal

variation in the arrival of the first Math League mentor at a school. Using a difference-in-differences

design, I estimate the causal effect of having a Math League mentor on a school’s likelihood of

participating in the AMC and on the number of exceptional math students identified by the AMC.

To estimate the effect of these mentors on individual students, I exploit variation in whether students

have mentors for an IV strategy. Taken together, these analyses provide evidence that math mentors

help reveal and nurture exceptional math talent at their schools.

5.1 School Impacts: Revealing Talent

I take a quasi-experimental approach to estimate the effect of math mentors on the amount of talent

revealed at their schools. This approach leverages the arrival, or activation, of Math League mentors

at schools across the US from 1994 to 2020 in a generalized difference-in-differences estimation

strategy.

For this strategy, I focus on a sample of entry Math League schools—those that first had a Math

League mentor between 1994 and 2020. I begin by identifying all public non-charter, non-magnet

7Individuals can list many current and previous positions on the LinkedIn profiles. I ensure at least one of these
positions is at the school in the Math League data.
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middle schools present in the NCES data every year from 1994 to 2020. I then restrict the sample

to schools that first had an active Math League mentor during this period. This restriction is crucial

for my identification strategy, as it limits the analysis to schools on the margin of having a Math

League mentor, allowing me to observe their behavior both before and after the mentor.

In Table 8a, I compare the entry Math League sample to two other samples of public, non-

charter, non-magnet middle schools present in the NCES data every year from 1994 to 2020. The

first of these samples is the never Math League schools–the schools that did not offer Math League

during this period. The other sample is the early Math League schools. This sample is the set

that offered Math League before 1994. The juxtaposition of the sample averages for these three

disjoint sets of schools communicates how the schools used for my empirical strategy–the entry

Math League schools–fit in the wider context of US public middle schools. I replicate this sample

construction for public, non-charter, non-magnet high schools. The summary statistics for the anal-

ogous three samples are provided in Table 8b. The comparisons between the middle school entry

sample and the other two middle school samples are similar to those for high schools.

When compared to the never Math League samples, the schools in the entry Math League sam-

ples have slightly higher shares of white and asian students. These samples differ more dramatically

along with respect to community characteristics. On average, the schools in the early Math League

samples are located in more populous and wealthier cities, with higher shares of college graduates.

To help address issues of generalizability, I control for community characteristics in several different

ways. Generalizability is tested directly Section 6.

The outcome of interest here is the number of top AMC scorers a school produces in a given

year, which is my measure of revealed exceptional math talent.8 Models estimated using OLS for

this outcome are necessarily misspecified as they can generate negative predicted counts. Addi-

tionally, these top AMC counts are heavily skewed; while some schools generate counts exceeding

twenty top AMC scorers, the vast majority of schools have zero top scorers. For these reasons,

Poisson and negative-binomial estimation are more appropriate in this context. These models treat

the outcome as a count variable, inherently restricted to non-negative integer values, and are better

suited to handle the skewness present in the data. I choose to estimate my models using the negative

binomial because these counts exhibit high a degree of overdispersion.9 The coefficients generated

using negative binomial are given in log-odds.

With the analytical samples situated and my preferred estimation approach discussed, I out-

line my generalized difference-in-differences strategy for estimating the mentor effect. I regress the

8I pick 3,200 as threshold here because 3,200 is a sufficient rank to make the both the middle school and high school
AMC honor rolls during this period. For the middle school analysis, this is the number of 6th, 7th, and 8th grade students
in the top 3,200. For the high school analysis, this is the number of 11th and 12th grade students in the top 3,200.

9Ellison & Swanson also choose the negative binomial to model the number AMC 12 students with a score of 100
or greater found at schools. Just as in their case, I find a likelihood ratio test rejects the Poisson alternative for both the
middle school and high school context (Ellison and Swanson, 2016). When testing robustness, I replicate the analyses
with Poisson, which yield similar estimates.
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number of top AMC scorers on an indicator for whether a school has an active Math League mentor,

while controlling for year fixed effects, community controls (log city population, city college gradu-

ate share, city per capita income) based on the 2000 census, and time-varying school characteristics

including as the log number of enrolled students, teacher-student ratio, the racial composition of the

school (shares of Asian, White, Black, and Hispanic students), and the share of free-lunch eligible

students:

talent(r)st = α+βmentorst + τt +Xstλ+ εst . (3)

If identification holds, β captures the causal effect of a Math League mentor on the number of ex-

ceptional math students revealed at a school in log-odds. I omit school fixed effects in my preferred

specification because the negative binomial drops schools for which top AMC counts are constant–

in this case always 0–throughout the period. These schools make up more than 60% of both samples

and I am particularly interested in the effect of these mentors at schools where top AMC scorers

might be rare. I also estimate the model with school fixed effects for comparison.

For identification to hold, the key assumption is that in the absence of a Math League mentor,

the treated schools would have followed parallel trends in the number of top AMC scorers compared

to the control schools. This parallel trends assumption is crucial for the validity of the difference-

in-differences approach and is supported by the inclusion of rich controls and fixed effects. These

controls account for differences across schools, such as student demographics and community char-

acteristics, which might otherwise confound the relationship between Math League participation

and AMC performance.

To provide evidence that the parallel trends assumption holds, I recast my difference-in-differences

specification as an event study.

talent(r)st = α+
26

∑
k=−26

β
(entry,k)I

î
t = k+T (entry)

s

ó
+β0attritionst + τt +Xstλ+ εst (4)

Instead of using a static indicator for whether a school has a Math League mentor in a given year,

the event study includes indicators for whether a school year aligns with a given year relative to

when the school first had a Math League mentor, denoted as I
î
t = k+T (entry)

s

ó
. Additionally, it

includes an indicator for whether the school had a Math League mentor previously, but no longer

does, denoted as attiritionst . Together, the coefficients β(entry,k) capture the trend in revealed talent

before and after a school first has a Math League mentor, while controlling for whether the mentor

remains active in the post-period. Flat trends during the pre-period would support the parallel trends

assumption.

The estimates indicate that math mentors have a significant impact on the amount of exceptional

math talent revealed at a school (Table 9 and Table 10). The estimated coefficients imply Math

League mentors have an enormous impact on the amount of exceptional math talent discovered
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at schools. They indicate mentors increase the number of top AMC scorers at middle schools by

248%. The analogous implied mentor effect at the high school level is 110%.

In Figure 5, I show the event study estimates for the models with and without school fixed

effects. The event studies for the specification without school fixed effects–which are estimated

using a larger set of schools–demonstrate that the pre-trends in revealed talent are flat leading up to

the arrival/activation of the Math League mentor at the school, and then sharply increase over the

course of two years after which the trends stabilize. These events studies support the parallel trends

assumption and provide evidence that the mentor effects on revealed talent are quickly realized

rather than gradual. The event studies for the specifications with school fixed effects have the same

pattern, though are noisier.

The mentor effect on revealed talent indicate there are exceptional math students in the US who

rely on math mentors to reveal their talents. This effect encompasses various mechanisms through

which a mentor may influence the success of these student. These mentors may help facilitate

peer effects between enthusiastic math students, they may help refine students’ abilities through

coaching, expose them to advanced concepts outside a traditional math curriculum, or encourage

participation in the AMC. The estimated mentor effect on revealed talent is simply the aggregation

of these effects.

Disentangling these effects would help determine the most productive efforts of these mentors,

which is important when one considers expanding access to resources like these mentors. If, for

example, the mentor effects on revealed talent are being entirely driven by expanding access to the

AMC, then making the AMC universal would reveal all the missing exceptional math students with

the only cost being the competition administration. The empirical challenge here is that I do not

observe school participation in the AMC from year to year.10

This is directly connected to a key feature of the top AMC counts: they include zero counts

drawn from two different distributions. Some of the zeros are structural; the school has no top

AMC scorers because the school does not participate in the AMC. The other zeros are random; the

school participates in the AMC, but does not produce any top scorers. Structural zeros are drawn

from a Bernoulli distribution, while random zeros arise from a count distribution like the negative

binomial distribution. Given these two types of zeros, a zero-inflated negative binomial (ZINB)

approach may be more appropriate than the original negative binomial strategies. ZINB estimation

also generates separate estimates for the mentor effect on AMC participation and on revealed talent

conditional on participation.

I now briefly explain how the (ZINB) model functions in this context. For school s in year t, this

model makes two predictions prior to predicting the number of top AMC 12 scorers, ’talent
(r)
st . One

of these predictions is the probability that school s in year t does not participate in the AMC, p̂in f
st .

This is estimated using the inflate part of the model. The other prediction this model makes is how

10AMC participation can only be confirmed for schools that have at least one top scorer.
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many top AMC 12 scorers school s in year t would produce if the school does participate in the the

competition, ’talentst . This is estimated using the count part of the model. The predicted number of

top AMC scorers is then the product of the non-participation probability and the talent estimate:’talent
(r)
st = (1− p̂in f

st )’talentst . (5)

This approach allows me to separate the impact of Math League mentors on expanding access to

the AMC, p̂in f
st , from their impact on the talent pool at a school ’talentst .

With this in mind, I estimate Equation 3 using a ZINB model. I exclude school fixed effects

because schools that never participate in the AMC would otherwise be dropped from the estimation.

These schools are essential for estimating the mentor effect on expanding AMC access. Aside from

the school fixed effects, I include the same controls for both the inflate and count portions of the

model.

Per the ZINB estimates, Math League mentors increase the amount of talent revealed at a school

by both increasing the probability schools participate in the AMC and, separately, increasing the

amount of actual talent (Table 11). The latter estimates are very similar to the negative binomial

estimates with school fixed effects. The coefficients from the inflate portion of the estimated ZINB

models imply Math League mentors decrease the probability a school does not participate in the

AMC by 72% for middle schools and 58% for high schools. The coefficients from the count por-

tion of the models imply these mentors increase the amount of exceptional math talent by 18% at

middle schools and 52% for high schools. I note that while the count estimates encompass a variety

of mechanisms through which mentors impact exceptional talent, the inflate estimates capture the

specific impact of these mentors on increasing school participation in the AMC. The event studies

for these estimates are noisier, particularly for the count portion of the model (Figure 6).

The large estimated effects for the inflate portion of the model imply a significant share of the

“missing” exceptional math students could be revealed by simply offering the AMC at more schools.

From a policy perspective, this would certainly be easier than expanding access to mentors. Students

identified through such an expansion would still receive credible signals of their ability. These

signals could help them gain access to out-of-school enrichment programs while still in secondary

school, improve their probability of being admitted to a selective university, or simply encourage

them to continue pursuing math and education more generally. Students revealed in this way would,

however, not benefit from other potential mentor effects (e.g. increased STEM enthusiasm from

interactions with invested adult).

A deeper discussion of the mechanisms through which mentors influence the amount of revealed

talent at a school is offered in Appendix A.
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5.1.1 Robustness

To test whether the mentor effect estimates are being driven by advantaged or disadvantaged schools,

I perform a heterogeneity analysis where I interact the indicator for Math League mentor, mentorst ,

with the share of free-lunch eligible students at the school during the year f lest :

talent(r)st = α+β0mentorst +β1 f lest +β2mentorst × f lest + τt +πs +Xstλ+ εst . (6)

The model is otherwise identical to Equation 3.

The estimates indicate the mentor effects are actually larger for more disadvantaged schools

(Table 12 and Table B.1). The estimates from the negative binomial model with school fixed effects

indicate that relative to a middle school with no free lunch eligible students, the mentor effect at a

middle school where 20% of the students are free lunch eligible is 25.8% larger. The same holds

for the high school estimates. Why might this be? One potential explanation for these differential

effects is that these math mentors might be more likely to first introduce the AMC to more disad-

vantaged schools, while more advantaged schools were more likely to be participating during the

preperiod. Another possibility is that exceptional students at disadvantaged schools may be less

likely to be challenged by their schools’ math curricula and math mentors compensate for this dis-

advantage. It may also be true that the math mentors at disadvantaged school are more motivated

than their peers at advantaged schools–they may have to overcome more institution barriers to or-

ganize such programs–and those in the sample are particularly talented at revealing and fostering

talent.

To provide evidence that these results are not being driven by misspecification, I repeat the

analysis using OLS, Poisson, and zero-inflated Poisson (ZIP). The estimated mentor effects for

these models are provided in Tables B.2 and B.3. The original results hold and those generated using

Poisson and ZIP are similar in magnitude to the original negative binomial and ZINB estimates. The

analogous event studies support the parallel trends assumption as before (Figure B.1). The results

are robust to misspecification.

To further assess the robustness of my results, I conduct a placebo test using the never Math

League sample. For this exercise, I randomly assign the sequences of Math League mentor vari-

ables, mentorst , from a school in the entry sample to each school in the never Math League sample

and estimate the mentor effects again using the negative binomial and ZINB. This provides two im-

portant checks. First, it checks that the effects are not being driven by unobservable trends in Math

League adoption or math competitions more generally. If, for example, Math League adoption was

correlated with a decline in the difficulty of being a top AMC scorer, the estimates produced by

this placebo test would still be positive and significant. Why? The never Math League schools

that do participate in the AMC would also experience an increase in top AMC scorers around the

same Math League adoption years. Second, it allows me to check whether the coefficients on the
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covariates in the never Math League sample are similar to those in the original entry Math League

sample. If these covariate coefficients differed greatly, it would cast doubt on the external validity

of these models and the robustness of the specifications more generally.

This placebo test supports my identification strategy and specification. The estimated mentor

effects are small and statistically insignificant (Table B.4 and Table B.5). This result suggests that

the original estimates of the effect of Math League participation on the number of top AMC scorers

are unlikely to be driven by spurious or uncontrolled time trends. Additionally, the estimated coef-

ficients on the covariates are comparable to the original covariates. This serves as further evidence

that my model is not mispecified and boosts the claim that the model is externally valid.

5.2 Student Impacts: Influencing Later-in-Life Outcomes

In this section, I estimate the causal effect of a high school math mentor on the later-in-life educa-

tion and occupation outcomes of students who have already demonstrated exceptional math ability

in middle school. To estimate these effects, I rely on a quasi-experimental design that leverages

variation in student exposure to a potential math mentor. The sample used for this analysis is a sub-

sample of the middle school AMC matched sample described in Section 4. In this case, the sample

is restricted to those students who attended a public, non-charter, non-magnet middle school and

who graduated high school in 1998 or later11.

It is important to highlight several key characteristics shared by all the students in this sample.

Every student included in this sample: (1) attended a public, non-charter, non-magnet middle school

with a teacher/mentor who organized the AMC; (2) participated in the AMC 8; and (3) were recog-

nized by the AMC for their exceptional math ability. Consequently, differences in the later-in-life

outcomes of these students are not driven by differences along these dimensions.

I use the Math League data to determine which of these students have a high school Math

League mentor. Ideally, I would observe which of these students participated in high school Math

League, but I do not observe student participation. I do, however, observe the names of students who

achieved a perfect score on at least one of the six Math League exams offered during a year. For this

specific set of students, achieving at least one perfect score on one of the potentially twenty-four

Math League exams available to them in high school should be relatively easy. Consequently, this

serves a good proxy for Math League participation. Given this, I consider a student in my sample

to have a high school Math League mentor if they achieved at least one perfect Math League score.

Not all students in this sample have the same potential to have a Math League mentor. While

every student in this sample attended a middle school that offered the AMC 8, there is variation

in whether these middle schools feed into a high school with an active Math League mentor. To

capture this variation I construct an indicator for whether the students middle school was within 5

11Based on the grade reported in the AMC data.
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miles of a high school that offered Math League during the years the student was in high school.12

I compare students who do and do not have a high school Math League mentor in Table 13. Pre-

high school characteristics, such as middle school AMC performance and demographics, are fairly

similar for students that do and do not have a Math League mentor. Unsurprisingly, the students

who have a high school math mentor attended a middle school within five miles of a high school

with an active Math League mentor. There are substantial differences in high school and later-in-

life outcomes for these students, however. Those with a mentor are much more likely to attend a

selective university, major in STEM, earn a PhD, and pursue a research career.

To estimate the impact of a high school math mentor on exceptional math students, I regress

these outcomes on whether the student has a high school math mentor (mentori), while controlling

for a rich set of student, school, and community variables, as well as year (τt), and location fixed

effects (σs).

yi = α+βmentorist + γrank(MS)
i + τt +σs +Xistλ+ εist . (7)

The student controls include a measure of pre-high school math ability (AMC 8 rank), high school

graduation cohort, race, and gender. School-level controls, which are tied to the student’s middle

school during the AMC 8 observation year, include the log of total 6th, 7th, and 8th grade enroll-

ment, student-teacher ratio, racial composition, and share of students that are free lunch eligible.

Community characteristics including per capita income and the share of college graduates within

the middle school’s city (measured in the year 2000), are also included. For one set of estimates I

use school district fixed effects, while for another I use school fixed effects. These help control for

unobservable time-invariant differences in school district and school characteristics (e.g. education

quality and STEM focus of community).

I use ordinary least squares (OLS) regression to estimate Equation 7 for various outcomes of

interest. My results suggest the effects of math mentors on exceptional math students are substantial

(Table 14). The estimates from the specification using district fixed effects, suggest math mentors

increase the probability these students become high school top AMC scorers (15.5pp), attend highly-

selective colleges (5.7pp), major in STEM (2.8pp), earn PhDs (2.1pp), and pursue research careers

(4.7pp). These effects, which become increasingly long-term, outline a potentially causal story,

especially given the sample and controls used in the estimation of these effects. An exceptional

math student has a math mentor in high school who helps them acquire a credible signal of their

ability (AMC 12 score) and increases their enthusiasm for STEM. This signal and an informed

reference letter from the mentor helps the student get into a highly resourced technical school like

MIT. At MIT the student is encouraged to continue pursuing STEM and have more exposure to

researchers. This exposure encourages them to earn a PhD and/or pursue a research career.

12In future iterations, I will be using the SABS data on middle school and high school catchment areas to construct a
similar measure of mentor exposure.
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Despite my specialized sample, rich set of controls, and causal story, the estimates generated

using OLS may be biased, which jeopardizes the causal interpretation of the OLS estimates. For

example, differential mentor take up may reflect difference in student enthusiasm for mathematics

that exist despite their common middle school math competition engagement. In this case, OLS

would overestimate the impact of the math mentor because the estimated coefficient is also capturing

the effect of STEM enthusiasm on later outcomes.

To address endogeneity concerns like these, I leverage variation in exposure to a high school

Math League mentor for an instrumental variables strategy. More specifically, I use an indicator

for whether the middle school a student attended was within five miles of a high school in the

same district that offered Math League during the years the student was in high school (exposurest)

as an instrument for whether the student had a high school Math League mentor (mentori). If

identification holds, the estimates generated using this IV strategy will be based on the local average

treatment effect; they capture the causal effect of math mentors on the outcomes of the exceptional

math students who are induced to have high school Math League mentors by their availability. These

are the compliers. Similar to the previous analysis, I implement this IV with district and school fixed

effects separately. I focus on the specification with district effects, but estimates with school fixed

effects are similar, though noisier.

For this IV strategy, the exclusion restriction requires that the instrument—whether the student’s

middle school was near a high school with an active Math League mentor—affects the student’s

outcomes only through the likelihood of having a high school Math League mentor. In other words,

the exclusion restriction assumes that being near a high school with a Math League mentor does not

have a direct impact on the student’s later academic or career outcomes beyond its effect on whether

the student has a math mentor.

This assumption is strengthened by the fact that my analysis includes district fixed effects, mean-

ing any differences in outcomes are not driven by broader district-level factors such as variation in

funding or policies. By controlling for district fixed effects, I effectively limit the comparison to

students who were subject to the same district-wide conditions but attended different high schools

within the district. Moreover, the sample itself is quite homogenous: all students attended pub-

lic, non-charter, non-magnet middle schools, participated in middle school math competitions, and

demonstrated exceptional math ability based on their AMC performance. Given these similarities,

the primary difference between students with and without a Math League mentor is their exposure

to a high school with an active Math League program, further supporting the plausibility of the

exclusion restriction. Therefore, the variation I leverage in exposure to a high school Math League

mentor is likely to only affect the outcomes through its impact on the probability of having a mentor.

mentori = α+βexposurest + γrank(MS)
i + τt +σs +Xistλ+ εist . (8)
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yi = α+β÷mentorist + γrank(MS)
i + τt +σs +Xistλ+ εist . (9)

I estimate the IV coefficients using two-stage least squares regression. For the first stage I regress

mentori on exposure while including all the controls from before. I then estimate the original

equation, but use the predicted values ÷mentor as shown in Equation 9.

The F-stat for the first stage indicates the instrument is strong (Table 15). Students near a

high school with an active Math League mentor (exposure = 1) are 9.6pp more likely to have a

high school Math League mentor (mentor = 1) than those who are not (exposure = 0). The results

suggest students who perform better on the AMC are more likely to have a high school Math League

mentor (i.e. participate and earn a perfect score) even after controlling for exposure, which aligns

with expectations.

The IV estimates are significant and larger than the OLS estimates (Table 16). This suggests

that the students who are induced to have a math mentor by proximity to a high school with a Math

League mentor–the compliers–experience larger effects from mentorship than the average student.

These compliers may be especially responsive to these math mentors and the environments they

cultivate because these students may lack adequate substitutes for the resources available to other

students. These other students may be more advantaged: “always-takers” whose parents help them

access a Math League school even if there is not one nearby, or “never-takers” who chose not to take-

up because they have access to other opportunities or mentors. Unlike these non-compliers, who

might have access to educational support regardless of Math League mentor availability, compliers

may rely more heavily on these mentors as the only educators invested in their long-term outcomes.

These mentors may be uniquely positioned to influence key decisions, such as college and major

choice, due to the strength of their relationship with the students and their guidance throughout

critical moments of academic development.

6 Estimating Missing Talent

In this section, I apply the zero-inflated negative binomial (ZINB) model from the previous section

to estimate how many exceptional math students failed to be identified at the never Math League

schools because their schools lacked a Math League mentor. I then apply the IV estimated mentor

effects to determine how many more of these students would have attended a selective university,

majored in STEM, earned PhDs, and pursued research careers in a back-of-the-envelope calculation.

6.1 Model Validation for Never Math League Schools

The analysis focuses on 8,193 non-magnet, public high schools in the NCES Common Core of

Data (CCD) from 1994 to 2020 that never had a Math League mentor during that period; this is the
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never Math League sample from the previous section. I use the estimated ZINB model estimated

using the high school entry Math League sample to estimate the amount of exceptional math talent

revealed at these schools by the AMC, talent(r)st . For all the school-year observations in this sample

mentorst = 0, meaning β̂ is never active. Consequently, the ZINB relies only on year fixed effects,

community characteristics, and time-varying school characteristics to predict school participation

in the AMC, (1− pin f
st ), and exceptional math talent, talentst .

The summary statistics for the never Math League sample used in this analysis and entry Math

League sample– which first joined Math League between 1994 and 2020–are provided in Table

8b. As stated before, the samples differ in some important ways: the schools used to estimate

the model tend to be located in more affluent and education areas and have higher proportions of

White and Asian students. These demographic and socioeconomic differences may be associated

with unobservable differences between these samples that could influence the model’s predictive

accuracy when applied to schools that have never participated in Math League, raising questions

about generalizability. There may also be school types in the never Math League sample that are

outside the support of the estimated ZINB model.

That said, the model performs well when viewed in aggregation. When aggregated by predicted

top AMC counts, these predicted counts closely align with the realized top AMC counts for the

schools during the period (Figure 7). This suggests the estimated model is performing well for

schools of various types, though the model does appear to overestimate counts for the top schools.

The model also performs well when aggregating up to the state level. For this state level aggre-

gation, I collapse all the school-year observations from 1994 to 2020 to the state level. I sum all

the realized and predicted AMC counts and take the log to produce log counts for each state. The

associated scatter plot reveals most states are close to the 45-degree line with the realized counts

equal to predicted counts.

The realized counts fall quite short for some states like Hawaii, Idaho, Oklahoma, and Wyoming

(Figure 8). Hawaii is a special case among these outliers; the model predicts the 34 schools in

Hawaii would have produced roughly as many top AMC scorers as the 734 California schools in

this sample during the period. For demographic reasons, these schools are outside the support of

the estimated model, so I drop these 34 schools from the remainder of the analysis.13 One possible

explanation for the other outlier states is that for, idiosyncratic reasons, the schools in these states

were relatively less likely to participate in the AMC during this period.14 With the Hawaiian schools

dropped, the average overestimate is a modest 7.2%.

13Hawaii is the only US state that is majority Asian, and the share of Asian students at Hawaiian high schools reflects
this. The ZINB model, which is estimated on schools with comparatively low shares of Asian students (Table 11), finds
the share of Asian students is a key predictor for both the inflate and count estimates. Together, these two facts produce
the overestimates.

14For a long time, the AMC had state coordinators–often mathematics professors–who played a key role in encour-
aging school participation. It is possible the coordinators for these states were less successful at encouraging school
participation.
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6.2 Back-of-the-Envelope: Mentor Impact on Revealing and Influencing Talent

I now consider how expanding access to these math mentors might have changed the amount of

exceptional talent revealed at these schools and their later outcomes. For this exercise, I again

predict the number of top AMC scorers these schools produce, but now assert that mentorst = 1

for all schools and time periods. Under this scenario, these 8,160 schools15 would have produced

20,360 top AMC scorers, a 122% increase over the 9,092 top AMC scorers realized at these schools.

These 11,168 additional students represent the missing exceptional math talents who would have

participated in the AMC and been identified as exceptional if they had access to a mentor. In

many states, especially in the Rocky Mountain region and the central South, the number of missing

students is five times that of identified students (9).

I now consider how these mentors might have impacted the trajectories of these 11,168 missing

students. I note these missing students align with the compliers from Section 5.2; these exceptional

math students were induced into participating in the AMC by these mentors. I apply the IV esti-

mated mentor effects to these students (Table 16a). Based on this exercise, these mentors would

have increased the number of these students attending selective universities (3,017 students), ma-

joring in STEM (3,465 students), earning PhDs (1,652 students), and pursuing careers as scientists

and professors (1,850 students) during this twenty-seven year period.

This back-of-the-envelope calculation assumes these 8,160 schools could activate or hire teach-

ers who could serve this role as well as the Math League mentors used to estimate the mentor effects.

This seems highly unlikely. Nevertheless, the estimates here could be scaled easily to determine the

impact of supplying teachers to a random subset of schools here. On average, how many of these

schools would I need to supply with a mentor in order to discover a missing student next year? 20

schools. How many years would it take before these mentor effects nudged a missing student at one

of these 20 schools into earning a PhD? 4.5 years.

Alternatively, I could instead use my model to identify a much smaller subset of schools where

there appears to be a lot of missing talent (high predicted AMC counts, low realized AMC counts).

Supplying these schools with mentors would be a much more efficient way to identify missing

students and influence their later-in-life outcomes. Furthermore, it seems reasonable to believe

such schools would be more likely to already have a teacher who could simply be encouraged or

incentivized to fulfill this role.

7 Discussion

The findings in this paper have significant implications for both education policy and the broader

economy. The results provide robust evidence supporting the “proficient mentor” hypothesis in

15Recall I dropped 33 schools from Hawaii.
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the context of mathematics, suggesting that capable but not necessarily expert mentors can play a

pivotal role in identifying and nurturing exceptional math talent. Importantly, my analysis shows

that by simply activating or providing access to proficient mentors, we could reveal substantially

more exceptional students and potentially change their educational and occupational trajectories.

It is important to emphasize that my analysis focuses specifically on the impact of these mentors

on exceptional math students—those in the top 1% of mathematical ability. However, it is reason-

able to believe that proficient mentors could have similar effects on highly capable and enthusiastic

students who may not be at the extreme end of the ability spectrum. If the benefits of these mentors

extend to students at, say, the 95th percentile in math ability, the aggregate impact of expanding

access to such mentorship could be even greater than the effects identified in this paper.
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AMC Sample Ref. Sample
mean sd mean sd

HS Cohort 2008.21 7.69 2008.21 7.69
Male 0.68 0.47 0.68 0.47
White 0.75 0.43 0.72 0.45
API 0.15 0.36 0.09 0.28
Other Race 0.09 0.29 0.20 0.40
Grad Share 0.27 0.12 . .
MS AMC Rank 3,117.80 2,294.71 . .
Top HS AMC 0.17 0.37 . .
Math 0.09 0.29 0.02 0.12
STEM Major 0.48 0.50 0.21 0.41
Selective BA/BS 0.22 0.41 0.02 0.14
Earned PhD 0.08 0.27 0.02 0.13
Scientist/Professor 0.08 0.28 0.02 0.14
Observations 14,249 14,249

(a) Middle School

AMC Sample Ref. Sample
mean sd mean sd

HS Cohort 2003.93 8.75 2003.93 8.75
Male 0.75 0.43 0.75 0.43
White 0.68 0.47 0.74 0.44
API 0.25 0.43 0.08 0.27
Other Race 0.07 0.26 0.18 0.38
Grad Share 0.27 0.12 . .
HS AMC Rank 2,382.07 1,644.69 . .
Math Major 0.14 0.34 0.02 0.13
STEM Major 0.54 0.50 0.21 0.40
Selective BA/BS 0.31 0.46 0.02 0.15
Earned PhD 0.12 0.33 0.02 0.15
Research Career 0.11 0.31 0.02 0.14
Observations 24,434 24,434

(b) High School

Table 1: This table provides summary statistics for the Linkedin matched AMC student samples. To
construct the reference sample, I matched every AMC student in the AMC/LinkedIn match sample
to another college graduate of the same gender who graduated in the same year.
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AMC PhD Avg. MS
Share Rate AMC Rank

Math 0.09 0.18 2,691
Physics/Astronomy 0.03 0.36 2,721
Computer Science 0.12 0.07 2,999
Social Sciences 0.16 0.07 3,082
Chemistry/Biochemistry 0.03 0.22 3,093
Engineering 0.19 0.11 3,196
Bus/Fin/Acct/Marketing 0.14 0.01 3,214
Life Sciences 0.08 0.13 3,326
Geosciences 0.01 0.08 3,468
Observations 14,249

(a) Middle School

AMC PhD Avg. HS
Share Rate AMC Rank

Computer Science 0.14 0.10 1,792
Math 0.14 0.23 1,852
Physics/Astronomy 0.05 0.43 2,148
Engineering 0.21 0.16 2,403
Chemistry/Biochemistry 0.04 0.31 2,498
Life Sciences 0.07 0.18 2,567
Social Sciences 0.14 0.08 2,577
Bus/Fin/Acct/Marketing 0.11 0.01 2,602
Geosciences 0.01 0.14 2,751
Observations 24,434 24,434 24,434

(b) High School

Table 2: The first column of this displays the share of the students in the LinkedIn matched AMC
student samples who major in a given subject (double majors counted twice). The second column
provides the rate at which students within given major pursue a PhD. The final column lists the
average AMC rank of students in the sample with a given major.
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Top HS AMC Selective BA/BS STEM Major PhD Scientist/Professor

MS AMC Rank 0.0610∗∗∗ 0.0232∗∗∗ 0.0153∗∗∗ 0.00737∗∗∗ 0.00540∗∗∗

(0.00222) (0.00225) (0.00255) (0.00144) (0.00163)

Female -0.0392∗∗∗ -0.0405∗∗∗ -0.190∗∗∗ -0.00886∗ -0.00378
(0.00659) (0.00771) (0.00904) (0.00492) (0.00490)

Asian 0.0602∗∗∗ 0.0455∗∗∗ 0.0349∗∗ -0.0106 0.00331
(0.0112) (0.0122) (0.0144) (0.00652) (0.00767)

Other Race 0.00367 0.0317∗∗ -0.00925 -0.0135 0.00549
(0.0113) (0.0136) (0.0147) (0.00836) (0.00935)

HS Cohort FE Yes Yes Yes Yes Yes
School FE Yes Yes Yes Yes Yes
Mean 0.168 0.221 0.481 0.0794 0.0848
N 14,249 14,249 14,249 14,249 14,249
Adj. R2 0.127 0.0617 0.0755 0.0311 0.00378

(a) Middle School

Selective BA/BS STEM Major PhD Scientist/Professor

HS AMC Rank 0.0134∗∗∗ 0.0164∗∗∗ 0.0125∗∗∗ 0.00438∗∗

(0.00220) (0.00240) (0.00186) (0.00176)

Female -0.0572∗∗∗ -0.198∗∗∗ -0.0214∗∗∗ -0.00796∗

(0.00753) (0.00813) (0.00508) (0.00453)

Asian 0.0456∗∗∗ -0.00189 -0.0315∗∗∗ 0.0130∗∗

(0.0102) (0.00845) (0.00566) (0.00553)

Other Race 0.0435∗∗∗ -0.0188 -0.0160∗ -0.00402
(0.0122) (0.0133) (0.00900) (0.00858)

HS Cohort FE Yes Yes Yes Yes
School FE Yes Yes Yes Yes
Mean 0.314 0.542 0.124 0.106
N 24,434 24,434 24,434 24,434
Adj. R2 0.0785 0.0823 0.0214 0.00873

(b) High School

Table 3: This table provides OLS estimates for a selection of coefficients from Equation 2. These co-
efficients are estimated using the Linkedin matched AMC student samples. The positive coefficients
on AMC rank demonstrate these students sort by their math ability, while the other coefficients on
speak to gaps in later-in-life outcomes. Standard errors are clustered at the school level.
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Job Title AMC Ref.
Word Sample Sample

md 45 0
cofounder 65 1
cs 84 6
phd 164 13
researcher 86 11
fellow 78 11
sr 90 13
professor 149 32
candidate 180 40
resident 112 25
scientist 184 47
software 721 192
physician 102 27
computer 114 32
strategy 94 27
science 199 60
mba 60 18
analytics 80 25
medicine 70 23
data 254 86
writer 54 19
engineer 1324 478
founder 69 25
research 225 84
product 192 72

(a) MS AMC

Job Title AMC Ref.
Word Sample Sample

mit 38 0
quantitative 68 2
cofounder 83 2
cs 112 3
physics 45 3
phd 167 14
surgeon 38 3
trader 61 6
math 70 7
fellow 97 12
mathematics 62 8
scientist 252 34
researcher 105 17
resident 95 16
software 862 161
machine 52 10
professor 281 55
sr 117 25
physician 117 25
learning 73 18
data 303 77
candidate 116 32
computer 112 30
research 239 70
portfolio 39 12

(b) HS AMC

Table 4: These tables provide insight on the careers pursued by students in both LinkedIn matched
AMC samples. The second column in these tables provides the number of AMC students out of
10,000 students who have the word in their primary job title on their LinkedIn profile. The third
column shows the same frequency for the associated reference sample. The words are sorted by the
ratio between the AMC sample and reference sample frequencies. The listed words are those that
show up in the job titles of at least 0.5% of the AMC sample and have the highest frequency ratios.
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Job AMC Ref.
Location Sample Sample

capital one 17.5 0
lockheed martin 15.4 0
epic 15.4 0
university washington 14.7 0
mckinsey company 11.2 0
google 74.4 1.4
amazon 32.3 .7
microsoft 28.1 .7
apple 21.8 .7
meta 16.8 .7
university california berkeley 15.4 .7
facebook 13.3 .7
university pennsylvania 11.9 .7
uc berkeley 11.9 .7
purdue university 11.2 .7
mit 11.2 .7
harvard university 10.5 .7
university chicago 19.7 1.4
northwestern university 9.8 .7
duke university 9.8 .7
yale university 9.8 .7
stanford university 26 2.1
georgia institute technology 16.8 1.4
university texas at austin 14 1.4
university michigan 13.3 1.4

(a) MS AMC

Job AMC Ref.
Location Sample Sample

facebook 28.6 0
mit 17.2 0
epic 14.7 0
princeton university 13.9 0
goldman sachs 11.9 0
jane street 10.6 0
mckinsey company 10.2 0
kaiser permanente 9.8 0
university illinois at urbanachampaign 9.4 0
harvard medical school 9 0
google 130.1 1.2
amazon 38.9 .4
apple 25 .4
microsoft 38.5 .8
intel corporation 14.3 .4
university washington 13.9 .4
yale university 13.1 .4
university california berkeley 13.1 .4
stanford university 25.8 .8
university pennsylvania 12.3 .4
cornell university 12.3 .4
northwestern university 11.9 .4
meta 22.1 .8
boeing 9 .4
nvidia 9 .4

(b) HS AMC

Table 5: These tables provide insight on the companies that employ students in both LinkedIn matched AMC samples. The second column in
these tables provides the number of AMC students out of 10,000 students who list this company as their primary company on their LinkedIn
profile. The third column shows the same frequency for the associated reference sample. The companies are sorted by the ratio between the
AMC sample and reference sample frequencies. The listed companies are those that show up in the profiles of at least 0.1% of the AMC
sample and have the highest frequency ratios.
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mean sd
Male 0.44 0.50
White 0.99 0.11
Masters 0.44 0.50
PhD 0.00 0.00
Teacher 0.91 0.29
Math Teacher 0.84 0.37
Physics Teacher 0.02 0.15
Comp. Sci. Teacher 0.04 0.18
Principal 0.00 0.06
G&T Coordinator 0.08 0.27
Department Chair 0.04 0.20
Club Advisor 0.14 0.35
Athletic Coach 0.09 0.28
Total Teaching Experience 12.06 9.34
District Teaching Experience 9.44 8.76
Recent Hire (Dist. Exp. ≤ 3) 0.32 0.47
School’s First ML Mentor 0.19 0.39
ML Mentor Years 3.50 3.38
Observations 257

Table 6: This tables provides summary statistics for 257 Wisconsin Math League mentors during
their first year of organizing the activity. The variable ML Mentor Years is the number of years a
mentor served as Math League mentor at the school.
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mean sd
HS Cohort 1991.44 12.64
Male 0.44 0.50
White 0.90 0.30
Asian 0.02 0.15
Non-Asian/White 0.08 0.27
University not Listed 0.53 0.50
Selective University 0.04 0.19
Major Not Listed 0.55 0.50
Education Major 0.09 0.28
Math Major 0.30 0.46
STEM Major 0.36 0.48
Masters 0.41 0.49
Education Masters 0.22 0.42
STEM Masters 0.12 0.32
PhD 0.04 0.19
Education PhD 0.03 0.18
STEM PhD 0.01 0.11
Observations 1,972

Table 7: This tables provides summary statistics for 1,972 Math League mentors with LinkedIn
profiles.
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Never Sample Entry Sample Early Sample
mean sd mean sd mean sd

White Share 0.70 0.31 0.71 0.29 0.75 0.25
Asian Share 0.03 0.07 0.04 0.10 0.04 0.08
Black Share 0.11 0.20 0.11 0.19 0.10 0.16
Hispanic Share 0.16 0.24 0.14 0.20 0.11 0.17
Free Lunch Share 0.39 0.26 0.32 0.25 0.26 0.22
Population (1000s) 108.68 368.81 85.99 293.20 74.53 240.42
Income per Capita (1000s) 18.07 6.23 21.38 9.38 23.18 10.06
BA/BS Grad Ratio 0.12 0.07 0.15 0.10 0.18 0.11
Math League Ever 0.00 0.00 1.00 0.00 1.00 0.00
Math League Active 0.00 0.00 0.13 0.33 0.36 0.48
AMC 8 Top 3200 Scorer 0.02 0.13 0.04 0.20 0.08 0.26
AMC 8 Top 3200 Scorers 0.05 0.54 0.17 1.39 0.31 1.98
Observations 207,711 34,830 40,230

(a) Middle School

Never Sample Entry Sample Early Sample
mean sd mean sd mean sd

White Share 0.75 0.29 0.76 0.26 0.73 0.27
Asian Share 0.02 0.06 0.04 0.08 0.05 0.09
Black Share 0.10 0.19 0.09 0.17 0.10 0.17
Hispanic Share 0.13 0.22 0.11 0.17 0.12 0.18
Free Lunch Share 0.33 0.24 0.24 0.21 0.22 0.20
Population (1000s) 52.03 226.74 64.96 197.55 75.85 215.63
Income per Capita (1000s) 17.42 5.23 20.73 8.08 23.37 10.18
BA/BS Grad Ratio 0.11 0.07 0.15 0.10 0.18 0.11
Math League Ever 0.00 0.00 1.00 0.00 1.00 0.00
Math League Active 0.00 0.00 0.21 0.41 0.51 0.50
Math League Honoree 0.00 0.00 0.08 0.26 0.18 0.38
Math League Honorees 0.00 0.00 0.25 1.47 0.62 2.18
AMC 10 Top 3200 Scorer 0.01 0.11 0.06 0.24 0.10 0.31
AMC 10 Top 3200 Scorers 0.03 0.34 0.18 1.28 0.30 1.60
AMC 12 Top 3200 Scorer 0.02 0.15 0.09 0.29 0.17 0.38
AMC 12 Top 3200 Scorers 0.04 0.38 0.24 1.23 0.50 1.79
Observations 221211 33102 33075

(b) High School

Table 8: These table contains summary statistics for samples of public, non-charter, non-magnet
middle schools and high schools that are present in the NCES data every year from 1994 to 2020.
The Never Sample are the schools that never participated in Math League during this period. The
Entry Sample are the schools that started participating in Math League after 1994. The Early Sample
are the schools that were already participating in Math League in 1994.
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(1) (2) (3)

Mentor 1.247∗∗∗ 0.971∗∗∗ 0.976∗∗∗

(0.0808) (0.0796) (0.0576)

City Pop. (log) 0.292∗∗∗ 0.235∗∗∗ 0.0679
(0.0255) (0.0269) (0.0456)

City BA Share 11.84∗∗∗ 6.225∗∗∗ -2.986∗∗∗

(0.617) (0.617) (0.996)

City Income (per capita) -0.0381∗∗∗ -0.0132∗∗∗ 0.0128∗

(0.00453) (0.00452) (0.00679)

Free Lunch Share -1.135∗∗∗ -0.0299 -1.663∗∗∗

(0.293) (0.336) (0.358)

School Enrollment (log) 1.061∗∗∗ 0.514∗∗∗ 0.756∗∗∗

(0.0729) (0.0832) (0.131)

Asian Student Share 3.640∗∗∗ 3.404∗∗∗ 2.518∗∗∗

(0.297) (0.270) (0.333)

Year FE Yes Yes Yes
Schl FE No No Yes
Technique NB NB NB
Mean 0.173 0.716 0.716
N 34766 8414 8414
Log-Likelihood -7647.8 -6468.0 -4956.7
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 9: This table presents coefficients from Equation 3 estimated using negative binomial re-
gression and the middle school entry Math League sample. The coefficients of interest are those
associated with Mentor, which capture the impact of middle school Math League mentors on the
number of top AMC scorers at a school in log odds. The estimated coefficients provide evidence
that Math League mentors increase the number of top AMC scorers at schools. Standard errors are
clustered at the school level.
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(1) (2) (3)

Mentor 0.743∗∗∗ 0.592∗∗∗ 0.385∗∗∗

(0.0426) (0.0412) (0.0400)

City Pop. (log) 0.265∗∗∗ 0.185∗∗∗ -0.0225
(0.0156) (0.0156) (0.0472)

City BA Share 11.13∗∗∗ 7.385∗∗∗ 5.082∗∗∗

(0.383) (0.376) (1.111)

City Income (per capita) -0.0511∗∗∗ -0.0331∗∗∗ -0.0365∗∗∗

(0.00412) (0.00397) (0.0105)

Free Lunch Share -0.839∗∗∗ -0.212 -0.0746
(0.214) (0.234) (0.318)

School Enrollment (log) 1.333∗∗∗ 0.834∗∗∗ 0.948∗∗∗

(0.0507) (0.0520) (0.105)

Asian Student Share 3.065∗∗∗ 2.951∗∗∗ 4.508∗∗∗

(0.184) (0.174) (0.365)

Year FE Yes Yes Yes
Schl FE No No Yes
Technique NB NB NB
Mean 0.245 0.660 0.660
N 33,041 12,238 12,238
Log-Likelihood -11679.5 -10517.2 -8127.6
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 10: This table presents coefficients from Equation 3 estimated using negative binomial regres-
sion and the high school entry Math League sample. The coefficients of interest are those associated
with Mentor, which capture the impact of high school Math League mentors on the number of top
AMC scorers at a school in log odds. The estimated coefficients provide evidence that Math League
mentors increase the number of top AMC scorers at schools. Standard errors are clustered at the
school level.
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Middle School High School
Inflate Model Count Model Inflate Model Count Model

Mentor -1.271∗∗∗ 0.166 -0.879∗∗∗ 0.419∗∗∗

(0.175) (0.113) (0.206) (0.111)

City Pop. (log) -0.102 0.237∗∗∗ -0.0540 0.222∗∗∗

(0.0678) (0.0515) (0.0840) (0.0514)

City BA Share -2.916 8.054∗∗∗ -8.418∗∗∗ 6.919∗∗∗

(1.815) (1.574) (2.756) (1.290)

City Income (per capita) 0.0108 -0.0163 0.0496∗∗ -0.0300∗∗∗

(0.0146) (0.0112) (0.0230) (0.0108)

Free Lunch Share 4.653∗∗∗ 3.968∗∗∗ -0.341 -0.724
(0.682) (0.760) (1.650) (1.002)

School Enrollment (log) -0.571∗∗∗ 0.693∗∗∗ -1.293∗∗∗ 0.615∗∗∗

(0.212) (0.258) (0.281) (0.165)

Asian Student Share -1.622∗∗∗ 3.380∗∗∗ -17.98∗∗∗ 1.237∗∗

(0.534) (0.557) (6.966) (0.599)

Year FE Yes Yes
Schl FE No No
Technique ZINB ZINB
Mean 0.173 0.245
N 34766 33041
Log-Likelihood -7295.4 -11395.9
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 11: This table presents coefficients from Equation 3 estimated using zero-inflated, negative
binomial regression and the both the middle school and high school entry Math League samples.
The coefficients on Mentor in the Inflate portion of these models capture the impact of Math League
mentors on schools non-participation in the AMC in log odds. The coefficients on Mentor in the
Count portion of these models capture the impact of Math League mentors the number of top AMC
scorers at an AMC participating school in log odds. The estimated coefficients provide evidence
that Math League mentors increase the number of top AMC scorers at schools by increasing AMC
participation and through other mechanisms. Standard errors are clustered at the school level.

39



(1) (2) (3)

Mentor 0.464∗∗∗ 0.488∗∗∗ 0.808∗∗∗

(0.110) (0.108) (0.0792)

Free Lunch Share -2.119∗∗∗ -0.875∗∗ -1.999∗∗∗

(0.318) (0.366) (0.381)

Mentor × Free Lunch Share 3.789∗∗∗ 2.748∗∗∗ 1.150∗∗∗

(0.399) (0.448) (0.363)

City Pop. (log) 0.293∗∗∗ 0.235∗∗∗ 0.0687
(0.0257) (0.0269) (0.0457)

City BA Share 11.81∗∗∗ 6.236∗∗∗ -2.911∗∗∗

(0.612) (0.613) (0.998)

City Income (per capita) -0.0385∗∗∗ -0.0141∗∗∗ 0.0125∗

(0.00450) (0.00448) (0.00679)

School Enrollment (log) 1.105∗∗∗ 0.560∗∗∗ 0.766∗∗∗

(0.0732) (0.0830) (0.131)

Asian Student Share 3.563∗∗∗ 3.315∗∗∗ 2.463∗∗∗

(0.294) (0.269) (0.334)

Year FE Yes Yes Yes
Schl FE No No Yes
Technique NB NB NB
Mean 0.173 0.716 0.716
N 34766 8414 8414
Log-Likelihood -7603.1 -6448.6 -4951.8
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 12: This table presents coefficients from Equation 6 estimated using negative binomial re-
gression and the middle school entry Math League sample. The coefficients of interest are those
associated with Mentor and Mentor X Free Lunch Share, which capture the impact of middle school
Math League mentors on the number of top AMC scorers at a school in log odds and differential
effects by schools’ share of free lunch eligible students. The estimated coefficients provide evidence
that Math League mentors increase the number of top AMC scorers at schools and have a larger,
proportional, effect at disadvantaged schools. Standard errors are clustered at the school level.
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No Mentor Mentor
mean sd mean sd

HS Cohort 2009.95 5.87 2011.31 5.40
Male 0.67 0.47 0.69 0.46
White 0.76 0.43 0.67 0.47
Asian 0.15 0.36 0.23 0.42
Non-Asian/White 0.09 0.28 0.10 0.30
City Pop. (log) 10.78 1.57 10.93 1.53
City BA Share 0.28 0.11 0.31 0.12
City Income (per capita) 30275.47 12600.01 34572.98 14251.10
MS AMC Rank 1824.62 1304.02 1588.79 1268.13
Mentor Near MS 0.46 0.50 0.66 0.47
Top HS AMC 0.13 0.34 0.32 0.47
STEM Major 0.49 0.50 0.58 0.49
Selective BA/BS 0.19 0.39 0.29 0.45
Earned PhD 0.08 0.27 0.09 0.29
Scientist/Professor 0.09 0.29 0.11 0.32
Observations 7,192 1,527

Table 13: This table provides summary statistics on students from the LinkedIn matched middle
school AMC sample who attended public, non-charter, non-magnet middle schools and graduated
high school between 1998 and 2020. Those in subsample (1) were not high school Math League
scorers. Those in subsample (2) were high school Math League scorers. Given the ability demon-
strated by these students in middle school, I consider being a high school Math League scorer a
good proxy for participating in Math League.
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Top HS AMC Selective BA/BS STEM Major Earned PhD Research Career

Mentor 0.157∗∗∗ 0.0575∗∗∗ 0.0376∗∗ 0.0217∗∗ 0.0171∗

(0.0107) (0.0124) (0.0153) (0.00849) (0.00924)

MS AMC Rank 0.0482∗∗∗ 0.0218∗∗∗ 0.0141∗∗∗ 0.00678∗∗∗ 0.00600∗∗∗

(0.00192) (0.00222) (0.00274) (0.00152) (0.00166)

Mean 0.163 0.206 0.509 0.0794 0.0938
Location FE District District District District District
N 8719 8719 8719 8719 8719
Adj. R-squared 0.160 0.0688 0.0741 0.0218 0.00322
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(a) OLS with District Fixed Effects

Top HS AMC Selective BA/BS STEM Major Earned PhD Research Career

Mentor 0.157∗∗∗ 0.0563∗∗∗ 0.0290∗ 0.0210∗∗ 0.0131
(0.0110) (0.0127) (0.0157) (0.00868) (0.00948)

MS AMC Rank 0.0482∗∗∗ 0.0213∗∗∗ 0.0146∗∗∗ 0.00588∗∗∗ 0.00552∗∗∗

(0.00199) (0.00230) (0.00283) (0.00157) (0.00171)

Mean 0.163 0.206 0.509 0.0794 0.0938
Location FE School School School School School
N 8719 8719 8719 8719 8719
Adj. R-squared 0.162 0.0654 0.0727 0.0235 0.0000866
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b) OLS with School Fixed Effects

Table 14: This table presents the estimated coefficient on Mentor from Equation 7 for various stu-
dent level outcomes. Estimates are provided for specification with district fixed effects and school
fixed effects separately, with those generated using school fixed effects being slightly smaller. The
highly significant, positive coefficients provide evidence mentors influence students outcomes be-
yond high school. Standard errors are clustered at the school level.
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Mentor
Near HS Mentor 0.0912∗∗∗

(5.98)
MS AMC Rank 0.0144∗∗∗

(7.20)
Female -0.0194∗

(-2.30)
Asian 0.0134

(1.14)
Non-Asian/White 0.00768

(0.54)
Mean 0.2123
N 8,719
F-Stat 35.78
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

(a) First Stage with District Fixed Effects

Mentor
Near HS Mentor 0.0779∗∗∗

(3.87)
MS AMC Rank 0.0151∗∗∗

(7.32)
Female -0.0153

(-1.77)
Asian 0.0140

(1.16)
Non-Asian/White 0.00349

(0.24)
Mean 0.2123
N 8,719
F-Stat 14.97
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

(b) First Stage with School Fixed Effects

Table 15: These tables show the first stage (Equation 8) for the instrument Near HS Mentor, an
indicator for a student’s middle school being within five miles of a high school that offers Math
League during the years the student would be in high school. The F-statistic indicates the instrument
is strong for both specifications. The coefficients on the covariates suggest mentor take up is higher
for students with better middle school AMC scores and for male students. Standard errors are
clustered at the school level.
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Top HS AMC Selective BA/BS STEM Major Earned PhD Scientist/Professor

Mentor 0.340∗∗ 0.411∗∗ 0.472∗∗ 0.225∗ 0.252∗

(0.163) (0.194) (0.239) (0.131) (0.143)

MS AMC Rank 0.0456∗∗∗ 0.0167∗∗∗ 0.00780∗ 0.00383 0.00260
(0.00307) (0.00365) (0.00450) (0.00247) (0.00270)

Mean 0.163 0.206 0.509 0.0794 0.0938
Location FE District District District District District
N 8719 8719 8719 8719 8719
Adj. R-squared 0.0131 -0.169 -0.136 -0.142 -0.172
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(a) IV with District Fixed Effects

Top HS AMC Selective BA/BS STEM Major Earned PhD Scientist/Professor

Mentor 0.314 0.526∗ 0.545 0.250 0.344
(0.249) (0.308) (0.374) (0.203) (0.228)

MS AMC Rank 0.0458∗∗∗ 0.0142∗∗∗ 0.00677 0.00241 0.000516
(0.00425) (0.00527) (0.00639) (0.00347) (0.00390)

Mean 0.163 0.206 0.509 0.0794 0.0938
Location FE School School School School School
N 8719 8719 8719 8719 8719
Adj. R-squared -0.0247 -0.311 -0.240 -0.220 -0.317
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(b) IV with School Fixed Effects

Table 16: The tables provide the IV estimated mentor effects (Equation 9) for various outcomes.
The estimates are significant, positive and much larger than the OLS estimates, suggesting they
were biased downwards. Standard errors are clustered at the school level.
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Figures
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Figure 1: This figure shows the number of US middle schools and high schools participating in various math competitions across years.
With fewer and fewer schools participating, there are likely more and more exceptionally talented math students being “missed” by these
competitions.

46



Figure 2: This figures displays the number of observable middle school (MS) and high school (HS) students honored by the AMC each
year for their performances. The spikes are driven by shocks in the difficulty of the competitions and/or the AMC honor roll policies. The
commentary from the AMC summaries suggest some of these shocks are intentional while others are not.
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(a) Elite BA/BS (b) STEM Major

(c) Earned PhD (d) Research Career

Figure 3: This figure displays a series of binned scatter plots between AMC 8 rank and later-in-life outcomes for students in the matched
AMC/LinkedIn sample. These plots are constructed while controlling for student gender, race, high school cohort, share of college graduates
in high school city, test fixed effects (e.g. observation based on 2012 AMC 8), grade fixed effects (e.g. observation taken while student was
in 7th grade), and state fixed effects
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(a) Elite BA/BS (b) STEM Major

(c) Earned PhD (d) Research Career

Figure 4: This figure displays a series of binned scatter plots between AMC 10/12 rank and later-in-life outcomes for students in the matched
AMC/LinkedIn sample. These plots are constructed while controlling for student gender, race, high school cohort, share of college graduates
in high school city, test fixed effects (e.g. observation based on 2012 AMC 10 A), grade fixed effects (e.g. observation taken while student
was in 11th grade), and state fixed effects
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(a) Middle School, No School FE (b) Middle School, School FE

(c) High School, No School FE (d) High School, School FE

Figure 5: These figures display the negative binomial estimated event study coefficients from Equation 4 with 95% confidence intervals. The
relative year coefficients are centered on the first year a school had a Math League mentor. Standard errors are clustered at the school level.
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(a) Middle School (Inflate) (b) Middle School (Count)

(c) High School (Inflate) (d) High School (Count)

Figure 6: These figures display the zero-inflated, negative binomial estimated event study coefficients from Equation 4 with 95% confidence
intervals. The relative year coefficients are centered on the first year a school had a Math League mentor. Standard errors are clustered at the
school level.
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Figure 7: This binned scatter plot with twenty bins is constructed using the sample of public, non-
magnet, non-charter high schools that never participated in Math League (Table 8b). It displays the
relationship between the number of realized top AMC 12 scorers at a school in a given year and the
number predicted using the high school zero-inflated negative binomial model estimated in Section
4.1 and documented in Table 10.
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Figure 8: This binned scatter plot is constructed using the sample of non-magnet, non-charter public
schools that never participated in Math League (Table 8b). It displays the relationship between the
log total number of realized top AMC 12 scorers within a state from 1994 to 2020 and the log
number predicted using the zero-inflated negative binomial model estimated in Section 4.1 and
documented in Table 10.
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Figure 9: To construct this map, I predict the number of top AMC scorers produced by schools in the never Math League sample from 1994
to 2020 using the high school zero-inflated negative binomial model documented in Table 10 while asserting that every school had a Math
League mentor. I then sum these predicted counts by state to obtain statewide prediction for this period. I also sum the realized top AMC
scorer counts by states during this period. The states in this map are colored based on the ratio of the predicted top AMC counts to the realized
counts, where states with a higher ratio are colored more darkly. This map suggests there are many “missing” exceptional math students who
could have identified if only they had a mentor (Section 6.2).
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A Framework For School-Based Mentors

In this appendix I provide a conceptual framework for understanding the impact of an activity-
specific, school-based mentor on students and schools. Examples of such mentors include athletic
coaches, theatre directors, and math competition coaches. These mentors provide students with the
opportunity to engage in the activity and refine related skills. I define two measures of productivity
for these mentors: a school value-added measure and a student value-added measure, which may
differ substantially for a given mentor. I then discuss how this framework applies to math mentors
and exceptional math students.

A.1 Mentor Value-Added

My model is closely related to teacher value-added models, but differs from traditional models in
two important ways. First, while most teacher value-added models assume a student has a teacher, I
allow for the possibility a student does not have a mentor for a given activity. Second, given a school
has a mentor for an activity, students are not forced to participate, but rather select into participation
themselves, are encouraged by their parents, or are recruited by a mentor.

Consider a student i ∈ N at school s with mentor j in activity k. The student works towards a
goal of some achievement or honor in the activity ai jk. For example, this could mean qualifying
for the All-State Orchestra as a violinist. The activity-specific, achievement, ai jk, for this student is
given by the sum of weighted student characteristics βkXi and the student value-added of mentor j:

ai jk = βkXi +µstud
jk + εi jk. (10)

This student achievement is realized if and only if the student participates in the activity and may
vary by mentor. The indicator Ii jk captures whether student i participates in activity k given it is
organized by mentor j. The achievement realized by student i is conditional on mentor j organizing
the activity and is given by the product of ai jk and this participation indicator

a∗i jk =
Ä

βkXi +µstud
jk

ä
Ii jk + εi jk. (11)

Let M jk ⊆ N be the set of students who participate in activity k when it is organized by mentor
j. I define the activity-specific, school achievement to be the sum of the achievements of those
participating in the activity:

A∗
s jk = ∑

i∈N
a∗i jk = ∑

i∈M j

Ä
βkXi +µstud

jk

ä
Ii jk + εs jk. (12)

Alternatively, I can write school achievement as the product of the number of the participating
students and the average student achievement

A∗
s jk = |M jk|

Ä
βkX̄ jk +µstud

jk

ä
, (13)

where X̄ jk are the average student characteristics of students in M jk. That is, X̄ jk =
1

|M jk| ∑i∈M jk
Xi.

This equation highlights the three mechanisms through which a mentor can influence school achieve-
ment in the activity. I refer to these as recruitment, selection, and improvement. Recruitment is the
number of students who participate

∣∣M jk
∣∣. Mentors can vary in their ability and/or desire to grow
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an activity. Selection refers to the average student characteristics of the recruited students and is de-
noted by X̄ jk. The final mechanism, improvement, is the student value-added µstud

jk which captures
the mentor’s ability to improve student ability in the activity.

Let j = 0 correspond to the absence of a mentor. In the case of no mentor, a∗i0k = 0 and,
consequently, A∗

s0k = 0. Because of this, students and schools may benefit from a mentor, even a
relatively low-quality mentor, because he provides access to the activity. As an example, consider
a math coach whose only contribution is facilitating the AMC and Math League. Students at the
school interested in the activity regardless of the mentor are able to participate in the competitions,
gather accolades and signals of their ability, and connect with similarly interested peers despite the
uninterested mentor. While teacher value-added models typically consider relative quality because
a student always has a teacher, no mentor at all is a valid counterfactual in this case.

Nevertheless, A∗
s j is a poor measure of a mentor’s productivity at the school-level. Schools may

vary substantially by student ability within an activity due to school or community characteristics.
Naturally, schools in Santa Cruz, California would have more success with a surfing club, while
schools in Boulder, Colorado would have more success with a ski club. To build a better measure of
school-level mentor productivity, I separate these influential characteristics from the mentor effects,
giving me the following decomposition:

A∗
s jk = γkZs +µschl

jk , (14)

where Zst are school characteristics and µschl
j is the school-level mentor effect. This serves as the

school analog to Equation 11, and I refer to µschl
jk as mentor j’s school value-added in activity k.

Considering counterfactuals over mentor quality is easier here; a mentor with with higher µschl
j

leads to greater school achievement regardless of the school. By combining equations 13 and 14,
the relationship between school value-added and and school value-added can be written as:

µschl
jk =

∣∣M jk
∣∣ÄβX̄ jk +µstud

jk

ä
− γkZs. (15)

The difference between µstud
jk and µschl

jk here is subtle. While µstud
jk depends only on the mentor’s

ability to impact student achievement, µschl
jk depends on this ability as well as the mentor’s ability

to recruit students (M jk) and the type of students they recruit X̄ jk. As an example, consider a music
teacher who recruits students for her school’s orchestra program. Her student value-added represents
her ability to increase a students’ ability to play an instrument. Her school value-added depends on
this student-value added as well as the number of students she can recruit and the quality of those
students.

A.2 Framework Applied to Math Mentors

In this paper, I apply this framework to math competition coaches, whom I refer to as math mentors.
I am interested in a couple specific impacts these math mentors may have on schools and students.
First, I am interested in the impact these mentors have on the amount of revealed talent at their
schools. In this case, a∗i jk is an indicator for a student doing particularly well on a math competition
and A∗

i jk is the number of such students at the school. A math mentor helps reveal talent if A∗
i jk

increases in their presence, which is also captured by the school value-added measure µschl
jk . Such an

effect would suggests math mentors play a key role in revealing exceptional math talent. While the
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data I use for the later analyses prevent me from decomposing this effect into recruitment, selection,
and improvement, those mechanisms are still helpful for understanding how such an effect could
occur.

Second, I am interested in the impact of these mentors on the later-in-life outcomes of individ-
ual exceptional math students. While later-in-life student outcomes are absent from this section,
this framework does suggest some mechanisms through which mentors may effect such later out-
comes. The most explicit is that math mentors may help exceptional math students acquire acquire
credible signals of their their math ability (a∗i jk). These signals may strengthen students’ college
applications, which help them attend more highly resources universities. These signals may also
encourage further investment in these students’ education by these parents, mentors, and/or the stu-
dents themselves who are inspired to continue their success. More subtly, by organizing math clubs
and competitions and recruiting students, these math mentors may cultivate an environment at their
schools where excellence in mathematics is considered “cool” and positive peer effects are abun-
dant. It seems reasonable to believe such an environment could have influence long-term outcomes.

B Robustness of Difference-in-Differences Estimates

In this Appendix I provide the tables and figures from the the robustness checks from Section 5.1.

B.1 Tables
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(1) (2) (3)

Mentor 0.348∗∗∗ 0.342∗∗∗ 0.245∗∗∗

(0.0605) (0.0585) (0.0531)

Free Lunch Share -1.962∗∗∗ -1.024∗∗∗ -0.622∗

(0.258) (0.275) (0.349)

Mentor × Free Lunch Share 2.692∗∗∗ 1.805∗∗∗ 1.181∗∗∗

(0.298) (0.304) (0.293)

City Pop. (log) 0.267∗∗∗ 0.186∗∗∗ -0.0272
(0.0156) (0.0156) (0.0475)

City BA Share 11.21∗∗∗ 7.477∗∗∗ 5.214∗∗∗

(0.384) (0.377) (1.114)

City Income (per capita) -0.0531∗∗∗ -0.0348∗∗∗ -0.0384∗∗∗

(0.00413) (0.00399) (0.0105)

School Enrollment (log) 1.329∗∗∗ 0.838∗∗∗ 0.951∗∗∗

(0.0507) (0.0521) (0.105)

Asian Student Share 3.210∗∗∗ 3.030∗∗∗ 4.485∗∗∗

(0.184) (0.174) (0.362)

Year FE Yes Yes Yes
Schl FE No No Yes
Technique NB NB NB
Mean 0.245 0.660 0.660
N 33041 12238 12238
Log-Likelihood -11638.7 -10499.4 -8119.5
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.1: This table presents coefficients from Equation 6 estimated using negative binomial re-
gression and the high school entry Math League sample. The coefficients of interest are those
associated with Mentor and Mentor X Free Lunch Share, which capture the impact of high school
Math League mentors on the number of top AMC scorers at a school in log odds and differential
effects by schools’ share of free lunch eligible students. The estimated coefficients provide evidence
that Math League mentors increase the number of top AMC scorers at schools and have a larger,
proportional, effect at disadvantaged schools. Standard errors are clustered at the school level.
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Middle Schools High Schools
OLS Poisson OLS Poisson

Mentor 0.215∗∗∗ 0.720∗∗∗ 0.108∗∗∗ 0.346∗∗∗

(0.0182) (0.0359) (0.0129) (0.0318)

Free Lunch Share -0.0588 -1.214∗∗∗ 0.0608 -0.401
(0.0511) (0.277) (0.0450) (0.271)

School Enrollment (log) 0.214∗∗∗ 1.695∗∗∗ 0.0964∗∗∗ 1.080∗∗∗

(0.0326) (0.107) (0.0303) (0.107)

Asian Student Share 11.57∗∗∗ 6.832∗∗∗ 6.520∗∗∗ 5.315∗∗∗

(0.219) (0.288) (0.217) (0.317)

Year FE Yes Yes Yes Yes
Schl FE Yes Yes Yes Yes
Technique OLS PN OLS PN
Mean 0.173 0.716 0.245 0.660
N 34766 8414 33041 12238
Log-Likelihood -48351.1 -6027.1 -37694.1 -8464.1
AIC 96770.3 12120.2 75456.2 16994.2
BIC 97057.8 12352.4 75742.0 17238.8
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.2: This table presents coefficients from Equation 3 estimated using OLS and Poisson for
the middle school and high school entry Math League samples. The coefficients of interest are those
associated with Mentor, which capture the impact of middle school Math League mentors on the
number of top AMC scorers at a school in log odds. The estimated coefficients provide evidence
that Math League mentors increase the number of top AMC scorers at schools. These estimates
are consistent with those obtained using the original negative binomial regression approach, which
strengthens the validity of the effects. Standard errors are clustered at the school level.
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Middle Schools High Schools
Inflate Count Inflate Count

Mentor -1.176∗∗∗ 0.148 -0.661∗∗∗ 0.340∗∗∗

(0.144) (0.119) (0.102) (0.0880)

City Pop. (log) -0.142∗∗ 0.196∗∗∗ -0.0930 0.244∗∗∗

(0.0604) (0.0529) (0.0570) (0.0484)

City BA Share -4.298∗∗∗ 6.539∗∗∗ -8.727∗∗∗ 4.702∗∗∗

(1.507) (1.248) (1.391) (0.992)

City Income (per capita) 0.0127 -0.0124 0.0399∗∗∗ -0.0160∗

(0.0127) (0.00779) (0.0155) (0.00897)

Free Lunch Share 3.498∗∗∗ 2.700∗∗∗ 0.771 -0.556
(0.631) (1.037) (0.723) (0.854)

School Enrollment (log) -0.702∗∗∗ 0.522∗∗ -0.884∗∗∗ 0.639∗∗∗

(0.147) (0.224) (0.158) (0.149)

Asian Student Share -2.204∗∗∗ 2.214∗∗∗ -2.351∗∗∗ 1.810∗∗∗

(0.471) (0.400) (0.593) (0.460)

Year FE Yes Yes
Schl FE No No
Technqiue ZIP ZIP
Mean 0.173 0.245
N 34766 33041
Log-Likelihood -7985.4 -11930.3
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.3: This table presents coefficients from Equation 3 estimated using zero-inflated, poisson
(ZIP)for the middle school and high school entry Math League samples. The coefficients of interest
are those associated with Mentor, which capture the impact of middle school Math League mentors
on the number of top AMC scorers at a school in log odds. These estimates are consistent with those
obtained using the zero-inflated, negative binomial (ZINB) regression approach, which strengthens
the validity of the effects.
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(1) (2) (3)

Mentor 0.0627 -0.0600 -0.0450
(0.0650) (0.0690) (0.0535)

City BA Share 13.71∗∗∗ 6.759∗∗∗ -1.625∗∗

(0.426) (0.395) (0.643)

City Income (per capita) -0.0458∗∗∗ -0.0274∗∗∗ -0.0229∗∗∗

(0.00371) (0.00324) (0.00515)

Free Lunch Share -1.918∗∗∗ -1.272∗∗∗ -1.697∗∗∗

(0.155) (0.194) (0.217)

School Enrollment (log) 0.950∗∗∗ 0.339∗∗∗ 0.764∗∗∗

(0.0368) (0.0436) (0.0737)

Asian Student Share 2.909∗∗∗ 2.825∗∗∗ 7.604∗∗∗

(0.243) (0.229) (0.402)

Year FE Yes Yes Yes
Schl FE No No Yes
Technique NB NB NB
Mean 0.0470 0.428 0.428
N 207065 22746 22746
Log-Likelihood -19508.7 -14768.4 -11001.1
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.4: This table presents estimated coefficients from a placebo exercise using the middle
school never Math League sample. In this placebo exercise, I randomly assign the mentor treatment
indicators from a school in the entry Math League sample to each school in the never Math League
and estimate Equation 3 using the modified never Math League sample. While the estimated covari-
ate coefficients are similar to those from the middle school entry Math League sample, the mentor
effects are null. This provides evidence the positive, statistically significant, non-placebo estimated
mentor effects are not the result of spurious correlations. Standard errors are clustered at the school
level.
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(1) (2) (3)

Mentor -0.0809∗∗ -0.0437 -0.0183
(0.0401) (0.0401) (0.0395)

City BA Share 11.49∗∗∗ 6.250∗∗∗ 3.931∗∗∗

(0.319) (0.296) (0.813)

City Income (per capita) -0.0441∗∗∗ -0.0223∗∗∗ -0.0306∗∗∗

(0.00338) (0.00302) (0.00724)

Free Lunch Share -2.390∗∗∗ -1.927∗∗∗ -1.222∗∗∗

(0.140) (0.155) (0.214)

log students 1.252∗∗∗ 0.395∗∗∗ 0.881∗∗∗

(0.0308) (0.0327) (0.0728)

Asian Student Share 1.948∗∗∗ 1.518∗∗∗ 1.651∗∗∗

(0.175) (0.159) (0.517)

Year FE Yes Yes Yes
Schl FE No No Yes
Technique NB NB NB
Mean 0.0415 0.281 0.281
N 220734 32610 32610
Log-Likelihood -22427.5 -18056.5 -13349.4
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.5: This table presents estimated coefficients from a placebo exercise using the middle
school never Math League sample. In this placebo exercise, I randomly assign the mentor treatment
indicators from a school in the entry Math League sample to each school in the never Math League
and estimate Equation 3 using the modified never Math League sample. While the estimated covari-
ate coefficients are similar to those from the middle school entry Math League sample, the mentor
effects are null. This provides evidence the positive, statistically significant, non-placebo estimated
mentor effects are not the result of spurious correlations. Standard errors are clustered at the school
level.
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B.2 Figures
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(a) OLS: Middle School (b) Poisson: Middle School

(c) OLS: High School (d) Poisson: High School

Figure B.1: These figures display the OLS and Poisson estimated event study coefficients from Equation 4 with 95% confidence intervals.
The relative year coefficients are centered on the first year a school had a Math League mentor. School fixed effects are included for these
models and standard errors are clustered at the school level.
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